Chin. Phys. Lett.  2022, Vol. 39 Issue (9): 094101    DOI: 10.1088/0256-307X/39/9/094101
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface
Rui Zhang1, Fan Ding2*, Xujin Yuan1*, and Mingji Chen1
1Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
2China Ship Development and Design Center, Wuhan 430064, China
Cite this article:   
Rui Zhang, Fan Ding, Xujin Yuan et al  2022 Chin. Phys. Lett. 39 094101
Download: PDF(5307KB)   PDF(mobile)(5310KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electromagnetic metasurface with chaos patterned surface could bring rich interaction modes contributing to fully disordered random motions in deterministic systems, which preform uncertainty, irreducibility and unpredictability. We investigate the influence of the correlation function (CF) properties of surface random patterns on the wave absorption performance. The complicated correlation function provides a fully developed random state, broadening the absorption bandwidth significantly and is helpful for reaching higher absorption rate. With the increasing number of peaks in the correlation function, the absorption band at $-15$ dB reflectivity widens significantly, band at $-20$ dB reflectivity begins to emerge. As the first peak's distance from the original point in the CF is enlarged, the absorption trough is gradually formed and deepened to $-35$ dB level. The results give in-depth understanding of the relation between absorption behavior and controlling parameters including correlation, image information and foam spacer layer thickness. This high absorption absorber has great application potential in customizable radio communication compatibility device and anechoic testing chamber.
Received: 20 July 2022      Published: 03 September 2022
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Ac (Low-dimensional chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/9/094101       OR      https://cpl.iphy.ac.cn/Y2022/V39/I9/094101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rui Zhang
Fan Ding
Xujin Yuan
and Mingji Chen
[1] Watts C M, Liu X, and Padilla W J 2012 Adv. Mater. 24 OP98
[2] Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, and Wang Z 2019 Adv. Opt. Mater. 7 1800995
[3] Yu P, Wu J, Ashalley E, Govorov A, and Wang Z 2016 J. Phys. D 49 365101
[4]Astorino M D, Frezza F, and Tedeschi N 2016 URSI Int. Symp. Electromagn. Theory (EMTS) (14–18 August 2016, Espoo, Finland) pp 34–37
[5] Yu P, Besteiro L V, Wu J, Huang Y, Wang Y, Govorov A O, and Wang Z 2018 Opt. Express 26 20471
[6] Yoo Y J, Kim Y J, Tuong P V, Rhee J Y, Kim K W, Jang W H, Kim Y, Cheong H, and Lee Y 2013 Opt. Express 21 32484
[7] Engheta N 2002 IEEE Anten. Propag. Soc. Int. Symp. 2 392
[8] Landy N L, Sajuyigbe S, Mock J J, Smith D R, and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[9] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, and Padilla W J 2008 Phys. Rev. B 79 125104
[10] Zhu W and Zhao X 2009 J. Opt. Soc. Am. B 26 2382
[11] Yoo Y J, Kim Y J, Hwang J S, Rhee J Y, Kim K W, Kim Y H, Cheong H, Chen L Y, and Lee Y P 2015 Appl. Phys. Lett. 106 071105
[12] Park J W, Van T P, Rhee J Y, Kim K W, Jang W H, Choi E H, Chen L Y, and Lee Y P 2013 Opt. Express 21 9691
[13] Shen X, Cui T J, Zhao J, Ma H F, Jiang W X, and Li H 2011 Opt. Express 19 9401
[14] Li S and Lu W 2020 J. Mater. Res. Technol. 9 15467
[15] Zhang J, Tian J, and Li L 2018 IEEE Photon. J. 10 4800512
[16] Bilal R M H, Baqir M A, Choudhury P K, Karaaslan M, Ali M M, Altłntas O, Rahim A A, Unal E, and Sabah C 2021 IEEE Access 9 5670
[17] Zhu W, Zhao X, and Ji N 2007 Appl. Phys. Lett. 90 011911
[18] Imani M F, Smith D R, and Hougne P D 2020 Adv. Funct. Mater. 30 2005310
[19] Hansen R C 2008 Microwave Opt. Technol. Lett. 50 875
[20] Hu C G, Li X, Feng Q, Chen X N, and Luo X G 2010 Opt. Express 18 6598
[21] Gorkunov-Maxim V, Gredeskul-Sergey A, Shadrivov-Ilya V, and Kivshar-Yuri S 2006 Phys. Rev. E 73 056605
[22] Singh R, Lu X, Gu J, Tian Z, and Zhang W 2010 J. Opt. 12 015101
[23] Zharov-Alexander A, Shadrivov-Ilya V, and Kivshar-Yuri S 2005 J. Appl. Phys. 97 113906
[24] Zhu W and Zhao X 2010 Eur. Phys. J. Appl. Phys. 50 21101
[25] He L, Deng L, Li Y, Luo H, He J, and Huang S S 2019 Appl. Phys. A 125 130
[26] Ding F, Cui Y, Ge X, Jin Y, and He S 2012 Appl. Phys. Lett. 100 103506
[27] Hao J, Lheurette E, Burgnies L, Okada E, and Lippens D 2014 Appl. Phys. Lett. 105 081102
[28] Cui T J, Qi M Q, Wan X, Zhao J, and Cheng Q 2014 Light: Sci. & Appl. 3 e218
[29] Rössler O E 1976 Phys. Lett. A 57 397
[30] Yuan X, Zhang C, Chen M, Cheng Q, Cheng X, Huang Y, and Fang D 2019 IEEE Antennas Wireless Propag. Lett. 18 197
[31] Du J, Zhang P, Qiu L, Gao X, Huang S, He L, and Deng L 2021 J. Appl. Phys. 130 165101
[32] Epstein I R and Vanag V K 2003 AIP Conf. Proc. 676 265
[33] Carruba V, Aljbaae S, Domingos R C, Huaman M, and Barletta W 2021 Celest. Mech. Dyn. Astr. 133 38
Related articles from Frontiers Journals
[1] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 094101
[2] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 094101
[3] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 094101
[4] Guo-Guo Wei, Chong Miao, Hao-Chong Huang, Hua Gao. Zero Refractive Index Properties of Two-Dimensional Photonic Crystals with Dirac Cones[J]. Chin. Phys. Lett., 2019, 36(3): 094101
[5] Shou-Qing Jia. Finite Volume Time Domain with the Green Function Method for Electromagnetic Scattering in Schwarzschild Spacetime[J]. Chin. Phys. Lett., 2019, 36(1): 094101
[6] Xiao-Xiao Zhang, Zhen-Sen Wu, Xiang Su. Influence of Breaking Waves and Wake Bubbles on Surface-Ship Wake Scattering at Low Grazing Angles[J]. Chin. Phys. Lett., 2018, 35(7): 094101
[7] Wen-Hao Xu, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Localized Optical Waves in Defocusing Regime of Negative-Index Materials[J]. Chin. Phys. Lett., 2017, 34(10): 094101
[8] Jin-Xing Li, Min Zhang, Peng-Bo Wei. Effects of Breaking Waves on Composite Backscattering from Ship-Ocean Scene[J]. Chin. Phys. Lett., 2017, 34(9): 094101
[9] Mohammad Hosein Fakheri, Hooman Barati, Ali Abdolali. Carpet Cloak Design for Rough Surfaces[J]. Chin. Phys. Lett., 2017, 34(8): 094101
[10] Xiao-Jing Zhang, Xi Wu, Ya-Dong Xu. Controlling of the Polarization States of Electromagnetic Waves Using Epsilon-near-Zero Metamaterials[J]. Chin. Phys. Lett., 2017, 34(8): 094101
[11] D. Basandrai, R. K. Bedi, A. Dhami, J. Sharma, S. B. Narang, K. Pubby, A. K. Srivastava. Radiation Losses in the Microwave X Band in Al-Cr Substituted Y-Type Hexaferrites[J]. Chin. Phys. Lett., 2017, 34(4): 094101
[12] Wei-Na Cui, Hong-Xia Li, Min Sun, Yong-Yuan Zhu. Coupling of Cutoff Modes in a Chain of Nonlinear Metallic Nanorods[J]. Chin. Phys. Lett., 2016, 33(12): 094101
[13] Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang, Yu Huang, Jin Xu, Yang Liu, Guo Guo, Xin-Jian Niu, Yu-Bin Gong, Gun-Sik Park. An Open Rectangular Waveguide Grating for Millimeter-Wave Traveling-Wave Tubes[J]. Chin. Phys. Lett., 2016, 33(09): 094101
[14] Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang, Jin Xu, Yang Liu, Guo Guo, Xin-Jian Niu, Yu-Bin Gong, Gun-Sik Park. Design of a Novel Folded Waveguide for 60-GHz Traveling-Wave Tubes[J]. Chin. Phys. Lett., 2016, 33(04): 094101
[15] HUANG Lei, FAN Yun-Hui, WU Shan, YU Li-Zhi. Giant Asymmetric Transmission and Optical Rotation of a Three-Dimensional Metamaterial[J]. Chin. Phys. Lett., 2015, 32(09): 094101
Viewed
Full text


Abstract