FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface |
Rui Zhang1, Fan Ding2*, Xujin Yuan1*, and Mingji Chen1 |
1Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China 2China Ship Development and Design Center, Wuhan 430064, China
|
|
Cite this article: |
Rui Zhang, Fan Ding, Xujin Yuan et al 2022 Chin. Phys. Lett. 39 094101 |
|
|
Abstract Electromagnetic metasurface with chaos patterned surface could bring rich interaction modes contributing to fully disordered random motions in deterministic systems, which preform uncertainty, irreducibility and unpredictability. We investigate the influence of the correlation function (CF) properties of surface random patterns on the wave absorption performance. The complicated correlation function provides a fully developed random state, broadening the absorption bandwidth significantly and is helpful for reaching higher absorption rate. With the increasing number of peaks in the correlation function, the absorption band at $-15$ dB reflectivity widens significantly, band at $-20$ dB reflectivity begins to emerge. As the first peak's distance from the original point in the CF is enlarged, the absorption trough is gradually formed and deepened to $-35$ dB level. The results give in-depth understanding of the relation between absorption behavior and controlling parameters including correlation, image information and foam spacer layer thickness. This high absorption absorber has great application potential in customizable radio communication compatibility device and anechoic testing chamber.
|
|
Received: 20 July 2022
Published: 03 September 2022
|
|
PACS: |
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
78.40.-q
|
(Absorption and reflection spectra: visible and ultraviolet)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Ac
|
(Low-dimensional chaos)
|
|
|
|
|
[1] | Watts C M, Liu X, and Padilla W J 2012 Adv. Mater. 24 OP98 |
[2] | Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, and Wang Z 2019 Adv. Opt. Mater. 7 1800995 |
[3] | Yu P, Wu J, Ashalley E, Govorov A, and Wang Z 2016 J. Phys. D 49 365101 |
[4] | Astorino M D, Frezza F, and Tedeschi N 2016 URSI Int. Symp. Electromagn. Theory (EMTS) (14–18 August 2016, Espoo, Finland) pp 34–37 |
[5] | Yu P, Besteiro L V, Wu J, Huang Y, Wang Y, Govorov A O, and Wang Z 2018 Opt. Express 26 20471 |
[6] | Yoo Y J, Kim Y J, Tuong P V, Rhee J Y, Kim K W, Jang W H, Kim Y, Cheong H, and Lee Y 2013 Opt. Express 21 32484 |
[7] | Engheta N 2002 IEEE Anten. Propag. Soc. Int. Symp. 2 392 |
[8] | Landy N L, Sajuyigbe S, Mock J J, Smith D R, and Padilla W J 2008 Phys. Rev. Lett. 100 207402 |
[9] | Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, and Padilla W J 2008 Phys. Rev. B 79 125104 |
[10] | Zhu W and Zhao X 2009 J. Opt. Soc. Am. B 26 2382 |
[11] | Yoo Y J, Kim Y J, Hwang J S, Rhee J Y, Kim K W, Kim Y H, Cheong H, Chen L Y, and Lee Y P 2015 Appl. Phys. Lett. 106 071105 |
[12] | Park J W, Van T P, Rhee J Y, Kim K W, Jang W H, Choi E H, Chen L Y, and Lee Y P 2013 Opt. Express 21 9691 |
[13] | Shen X, Cui T J, Zhao J, Ma H F, Jiang W X, and Li H 2011 Opt. Express 19 9401 |
[14] | Li S and Lu W 2020 J. Mater. Res. Technol. 9 15467 |
[15] | Zhang J, Tian J, and Li L 2018 IEEE Photon. J. 10 4800512 |
[16] | Bilal R M H, Baqir M A, Choudhury P K, Karaaslan M, Ali M M, Altłntas O, Rahim A A, Unal E, and Sabah C 2021 IEEE Access 9 5670 |
[17] | Zhu W, Zhao X, and Ji N 2007 Appl. Phys. Lett. 90 011911 |
[18] | Imani M F, Smith D R, and Hougne P D 2020 Adv. Funct. Mater. 30 2005310 |
[19] | Hansen R C 2008 Microwave Opt. Technol. Lett. 50 875 |
[20] | Hu C G, Li X, Feng Q, Chen X N, and Luo X G 2010 Opt. Express 18 6598 |
[21] | Gorkunov-Maxim V, Gredeskul-Sergey A, Shadrivov-Ilya V, and Kivshar-Yuri S 2006 Phys. Rev. E 73 056605 |
[22] | Singh R, Lu X, Gu J, Tian Z, and Zhang W 2010 J. Opt. 12 015101 |
[23] | Zharov-Alexander A, Shadrivov-Ilya V, and Kivshar-Yuri S 2005 J. Appl. Phys. 97 113906 |
[24] | Zhu W and Zhao X 2010 Eur. Phys. J. Appl. Phys. 50 21101 |
[25] | He L, Deng L, Li Y, Luo H, He J, and Huang S S 2019 Appl. Phys. A 125 130 |
[26] | Ding F, Cui Y, Ge X, Jin Y, and He S 2012 Appl. Phys. Lett. 100 103506 |
[27] | Hao J, Lheurette E, Burgnies L, Okada E, and Lippens D 2014 Appl. Phys. Lett. 105 081102 |
[28] | Cui T J, Qi M Q, Wan X, Zhao J, and Cheng Q 2014 Light: Sci. & Appl. 3 e218 |
[29] | Rössler O E 1976 Phys. Lett. A 57 397 |
[30] | Yuan X, Zhang C, Chen M, Cheng Q, Cheng X, Huang Y, and Fang D 2019 IEEE Antennas Wireless Propag. Lett. 18 197 |
[31] | Du J, Zhang P, Qiu L, Gao X, Huang S, He L, and Deng L 2021 J. Appl. Phys. 130 165101 |
[32] | Epstein I R and Vanag V K 2003 AIP Conf. Proc. 676 265 |
[33] | Carruba V, Aljbaae S, Domingos R C, Huaman M, and Barletta W 2021 Celest. Mech. Dyn. Astr. 133 38 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|