Chin. Phys. Lett.  2022, Vol. 39 Issue (9): 093202    DOI: 10.1088/0256-307X/39/9/093202
ATOMIC AND MOLECULAR PHYSICS |
Measurements of Dipole Moments for the $5{s}5{p}\,^3\!{P}_1$–$5{s}n{s}\, ^3\!{S}_1$ Transitions via Autler–Townes Spectroscopy
Canzhu Tan1,2, Fachao Hu1,2, Zhijing Niu1,2†, Yuhai Jiang2,3*, Matthias Weidemüller1,2,4*, and Bing Zhu2,4,5*
1Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
2CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3Center for Transformative Science and School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
4Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
5HSBC Lab-China, Guangzhou 510620, China
Cite this article:   
Canzhu Tan, Fachao Hu, Zhijing Niu et al  2022 Chin. Phys. Lett. 39 093202
Download: PDF(2301KB)   PDF(mobile)(2552KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report on experimental measurements of the transition dipole moments (TDMs) between the intermediate state $5{s}5{p}\, ^3\!{P}_1$ and the triplet Rydberg series $5{s}n{s}\, ^3\!{S}_1$ in an ultracold strontium gas. Here $n$ is the principal quantum number ranging from 19 to 40. The transition $5{s}5{p}\, ^3\!{P}_1$–$5{s}n{s}\, ^3\!{S}_1$ is coupled via an ultraviolet (UV) beam, inducing Autler–Townes splitting of both states. Such a splitting of the intermediate state is spectroscopically measured by using absorption imaging on a narrow transition $5{s^2}\, ^1{S}_0$–$5{s}5{p}\, ^3\!{P}_1$ in an ultracold gas of strontium atoms. The power and size of the UV beam are carefully determined, with which the TDMs are extracted from the measured Autler–Townes splitting. The experimentally obtained TDMs are compared to the calculations based on a parametric core potential, on a Coulomb potential with quantum defect, and on the open-source library Alkali Ryderg calculator, finding good agreement with the former two models and significant deviation with the latter.
Received: 30 June 2022      Published: 29 August 2022
PACS:  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
  67.85.-d (Ultracold gases, trapped gases)  
  32.80.Ee (Rydberg states)  
  42.62.Fi (Laser spectroscopy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/9/093202       OR      https://cpl.iphy.ac.cn/Y2022/V39/I9/093202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Canzhu Tan
Fachao Hu
Zhijing Niu
Yuhai Jiang
Matthias Weidemüller
and Bing Zhu
[1]Gallagher T F 2005 Rydberg Atoms (Cambridge: Cambridge University Press)
[2] Browaeys A and Lahaye T 2020 Nat. Phys. 16 132
[3] Altman E, Brown K R, Carleo G, Carr L D, Demler E, Chin C, DeMarco B, Economou S E, Eriksson M A, Fu K M C, Greiner M, Hazzard K R, Hulet R G, Kollár A J, Lev B L, Lukin M D, Ma R, Mi X, Misra S, Monroe C, Murch K, Nazario Z, Ni K K, Potter A C, Roushan P, Saffman M, Schleier-Smith M, Siddiqi I, Simmonds R, Singh M, Spielman I, Temme K, Weiss D S, Vučković J, Vuletić V, Ye J, and Zwierlein M 2021 PRX Quantum 2 017003
[4] Saffman M, Walker T G, and Mølmer K 2010 Rev. Mod. Phys. 82 2313
[5] Adams C S, Pritchard J D, and Shaffer J P 2020 J. Phys. B 53 012002
[6]White H E 1934 Introduction to Atomic Spectra (New York: McGraw-Hill)
[7] Šibalić N, Pritchard J D, Adams C S, and Weatherill K J 2017 Comput. Phys. Commun. 220 319
[8] Weber S, Tresp C, Menke H, Urvoy A, Firstenberg O, Büchler H P, and Hofferberth S 2017 J. Phys. B 50 133001
[9] Dunning F B, Killian T C, Yoshida S, and Burgdörfer J 2016 J. Phys. B 49 112003
[10] Seaton M J 2002 Comput. Phys. Commun. 146 225
[11] Marinescu M, Sadeghpour H R, and Dalgarno A 1994 Phys. Rev. A 49 982
[12] Oumarou B, Picart J, Minh N T, and Chapelle J 1988 Phys. Rev. A 37 1885
[13] Millen J, Lochead G, Corbett G R, Potvliege R M, and Jones M P A 2011 J. Phys. B 44 184001
[14] Vaillant C L, Jones M P A, and Potvliege R M 2012 J. Phys. B 45 135004
[15] Ye S, Zhang X, Killian T C, Dunning F B, Hiller M, Yoshida S, Nagele S, and Burgdörfer J 2013 Phys. Rev. A 88 043430
[16] Vaillant C L, Jones M P A, and Potvliege R M 2014 J. Phys. B 47 155001
[17] Piotrowicz M J, MacCormick C, Kowalczyk A, Bergamini S, Beterov I I, and Yakshina E A 2011 New J. Phys. 13 093012
[18] Hu F, Tan C, Jiang Y, Weidemüller M, and Zhu B 2022 Chin. Phys. B 31 016702
[19] Zhang H, Wang L, Chen J, Bao S, Zhang L, Zhao J, and Jia S 2013 Phys. Rev. A 87 033835
[20]Ahmed E H, Huennekens J, Kirova T, Qi J, and Lyyra A M 2012 Advances in Atomic, Molecular, and Optical Physics (Amsterdam: Elsevier) vol 61 pp 467–514
[21]Sobelman I I 1992 Atomic Spectra and Radiative Transitions (Berlin: Springer)
[22] Nosske I, Couturier L, Hu F, Tan C, Qiao C, Blume J, Jiang Y H, Chen P, and Weidemüller M 2017 Phys. Rev. A 96 053415
[23] Hu F, Nosske I, Couturier L, Tan C, Qiao C, Chen P, Jiang Y H, Zhu B, and Weidemüller M 2019 Phys. Rev. A 99 033422
[24] Qiao C, Tan C Z, Hu F C, Couturier L, Nosske I, Chen P, Jiang Y H, Zhu B, and Weidemüller M 2019 Appl. Phys. B 125 215
[25] Couturier L, Nosske I, Hu F, Tan C, Qiao C, Jiang Y H, Chen P, and Weidemüller M 2019 Phys. Rev. A 99 022503
[26] Aman J A, DeSalvo B J, Dunning F B, Killian T C, Yoshida S, and Burgdörfer J 2016 Phys. Rev. A 93 043425
[27] DeSalvo B J, Aman J A, Gaul C, Pohl T, Yoshida S, Burgdörfer J, Hazzard K R A, Dunning F B, and Killian T C 2016 Phys. Rev. A 93 022709
[28] Fleischhauer M, Imamoglu A, and Marangos J P 2005 Rev. Mod. Phys. 77 633
[29] Klapisch M 1971 Comput. Phys. Commun. 2 239
[30]Millen J 2011 A Cold Strontium Rydberg Gas, Ph.D. thesis (Durham University)
[31] Johnson B R 1977 J. Chem. Phys. 67 4086
[32] Robertson E J, Šibalić N, Potvliege R M, and Jones M P A 2021 Comput. Phys. Commun. 261 107814
Related articles from Frontiers Journals
[1] Benquan Lu, Xiaotong Lu, Jiguang Li, and Hong Chang. Reconciliation of Theoretical Lifetimes of the $5s5p\,^3\!P^{\rm o}_2$ Metastable State for $^{88}$Sr with Measurement: The Role of the Blackbody-Radiation-Induced Decay[J]. Chin. Phys. Lett., 2022, 39(7): 093202
[2] Juan-Juan Cao, Ting Gong, Zhong-Hao Li, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Transition Dipole Moment Measurements of Ultracold Photoassociated $^{85}$Rb$^{133}$Cs Molecules by Depletion Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(10): 093202
[3] Peng Peng, Liang-hui Huang, Dong-hao Li, Peng-jun Wang, Zeng-ming Meng, Jing Zhang. Influence on the Lifetime of $^{87}$Rb Bose–Einstein Condensation for Far-Detuning Single-Frequency Lasers with Different Phase Noises[J]. Chin. Phys. Lett., 2018, 35(6): 093202
[4] CAI Juan, YU Wei-Wei, ZHANG Nan. The Scaling Law in the Fine-Structure Splitting of 1s2np States for the Lithium Isoelectronic Sequence[J]. Chin. Phys. Lett., 2014, 31(09): 093202
[5] CHEN Jie, ZHANG Hao, BAO Shan-Xia, WANG Li-Mei, ZHANG Lin-Jie, LI Chang-Yong, ZHAO Jian-Ming, JIA Suo-Tang. High-l Rydberg States' Interference Using a Double-Pulse Electric Field[J]. Chin. Phys. Lett., 2014, 31(2): 093202
[6] LONG Yun, XIONG Zhuan-Xian, ZHANG Xi, ZHANG Meng-Jiao, LÜ Bao-Long, HE Ling-Xiang. Observation of Photoassociation Spectra of Ultracold 174Yb Atoms at 1S03P1 Inter-Combination Line[J]. Chin. Phys. Lett., 2013, 30(7): 093202
[7] GUO Jian, WANG Yan-Hui. Analysis of Laser-Diode and Lamp Optical Pumping for a Rubidium Beam[J]. Chin. Phys. Lett., 2013, 30(2): 093202
[8] FAN Jian-Zhong, ZHANG Deng-Hong, CHANG Zhi-Wei, SHI Ying-Long, DONG Chen-Zhong. Energy-Crossing and Its Effect on Lifetime of the 4s24p 2P3/2 Level for Highly Charged Ga-Like Ions[J]. Chin. Phys. Lett., 2012, 29(7): 093202
[9] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 093202
[10] SHEN Li, WANG Lei, YANG Hai-Feng, LIU Xiao-Jun, LIU Hong-Ping** . Lifetime Measurement for 6snp Rydberg States of Barium[J]. Chin. Phys. Lett., 2011, 28(4): 093202
[11] WANG De-Hua. Corrigendum: “Extracting Closed Classical Orbits from Quantum Recurrence Spectra of a Non-Hydrogenic Atom in Parallel Electric and Magnetic Fields”[J]. Chin. Phys. Lett., 2010, 27(8): 093202
[12] GAO Xiang, CHEN Shao-Hao, LI Jia-Ming,. Finite Space Complete Basis Method: Precision Computation of High-Resolution Spectrum near Ionization Threshold[J]. Chin. Phys. Lett., 2009, 26(1): 093202
[13] BIAN Xue-Bin, LIU Hong-Ping, SHI Ting-Yun. A Time-Dependent Approach to High-Resolution Photoabsorption Spectrum of Rydberg Atoms in Magnetic Fields[J]. Chin. Phys. Lett., 2008, 25(6): 093202
[14] LI Ji-Guang, DONG Chen-Zhong, DING Xiao-Bin. Resonance Energies, Absorption Oscillator Strengths and Ionization Potentials for the Element Hassium[J]. Chin. Phys. Lett., 2007, 24(1): 093202
[15] CHEN Shao-Hao, LI Jia-Ming,. Real-Space Wave-Packet Propagation Method: Application to Photoabsorption Processes of Hydrogen Atoms[J]. Chin. Phys. Lett., 2006, 23(10): 093202
Viewed
Full text


Abstract