GENERAL |
|
|
|
|
Logarithmic Quantum Time Crystal |
Haipeng Xue1†, Lingchii Kong1†, and Biao Wu1,2,3* |
1International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China 2Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 3Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
|
|
Cite this article: |
Haipeng Xue, Lingchii Kong, and Biao Wu 2022 Chin. Phys. Lett. 39 080501 |
|
|
Abstract We investigate a time-independent many-boson system, whose ground states are quasi-degenerate and become infinitely degenerate in the thermodynamic limit. Out of these quasi-degenerate ground states we construct a quantum state that evolves in time with a period that is logarithmically proportional to the number of particles, that is, $T\sim \log N$. This boson system in such a state is a quantum time crystal as it approaches the ground state in the thermodynamic limit. The logarithmic dependence of its period on the total particle number $N$ makes it observable experimentally even for systems with very large number of particles. Possible experimental proposals are discussed.
|
|
Received: 01 May 2022
Editors' Suggestion
Published: 07 July 2022
|
|
PACS: |
05.30.Jp
|
(Boson systems)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
67.10.Ba
|
(Boson degeneracy)
|
|
67.85.Jk
|
(Other Bose-Einstein condensation phenomena)
|
|
|
|
|
[1] | Beekman A J, Rademaker L and van Wezel J 2019 An Introduction to Spontaneous Symmetry Breaking, in SciPost Physics Lecture Notes 11 |
[2] | Shapere A and Wilczek F 2012 Phys. Rev. Lett. 109 160402 |
[3] | Wilczek F 2012 Phys. Rev. Lett. 109 160401 |
[4] | Nozières P 2013 Europhys. Lett. 103 57008 |
[5] | Bruno P 2013 Phys. Rev. Lett. 111 070402 |
[6] | Watanabe H and Oshikawa M 2015 Phys. Rev. Lett. 114 251603 |
[7] | Sacha K 2015 Phys. Rev. A 91 033617 |
[8] | Else D V, Bauer B and Nayak C 2016 Phys. Rev. Lett. 117 090402 |
[9] | Khemani V, Lazarides A, Moessner R and Sondhi S L 2016 Phys. Rev. Lett. 116 250401 |
[10] | Yao N Y, Potter A C, Potirniche I D and Vishwanath A 2017 Phys. Rev. Lett. 118 030401 |
[11] | Choi S, Choi J, Landig R, Kucsko G, Zhou H, Isoya J, Jelezko F, Onoda S, Sumiya H, Khemani V et al. 2017 Nature 543 221 |
[12] | Zhang J, Hess P W, Kyprianidis A, Becker P, Lee A, Smith J, Pagano G, Potirniche I D, Potter A C, Vishwanath A et al. 2017 Nature 543 217 |
[13] | Kozin V K and Kyriienko O 2019 Phys. Rev. Lett. 123 210602 |
[14] | Li T, Gong Z X, Yin Z Q, Quan H T, Yin X, Zhang P, Duan L M and Zhang X 2012 Phys. Rev. Lett. 109 163001 |
[15] | Zhu Q, Zhang Q, and Wu B 2015 J. Phys. B 48 045301 |
[16] | Shapere A D and Wilczek F 2019 Proc. Natl. Acad. Sci. USA 116 18772 |
[17] | Huang Y, Li T and Yin Z 2018 Phys. Rev. A 97 012115 |
[18] | Syrwid A, Kosior A and Sacha K 2021 Europhys. Lett. 134 66001 |
[19] | Hong C K, Ou Z Y and Mandel L 1987 Phys. Rev. Lett. 59 2044 |
[20] | Liang J Q, Liu J L, Li W D and Li Z J 2009 Phys. Rev. A 79 033617 |
[21] | Cao H and Fu L 2012 Eur. Phys. J. D 66 97 |
[22] | Hemmerich A 2019 Phys. Rev. A 99 013623 |
[23] | Lipkin H J, Meshkov N and Glick A 1965 Nucl. Phys. 62 188 |
[24] | Von Neumann J 1929 Z. Phys. 57 30 |
[25] | Han X and Wu B 2015 Phys. Rev. E 91 062106 |
[26] | Jiang J, Chen Y and Wu B 2017 arXiv:1712.04533 [quant-ph] |
[27] | Fang Y, Wu F and Wu B 2018 J. Stat. Mech.: Theory Exp. 2018 023113 |
[28] | Zhao C and Wu B 2021 Chin. Phys. Lett. 38 030502 |
[29] | Wang Z, Feng J and Wu B 2021 Phys. Rev. Res. 3 033239 |
[30] | Sacha K and Zakrzewski J 2018 Rep. Prog. Phys. 81 016401 |
[31] | Islam R, Ma R, Preiss P M, Tai M E, Lukin A, Rispoli M and Greiner M 2015 Nature 528 77 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|