Chin. Phys. Lett.  2022, Vol. 39 Issue (8): 080301    DOI: 10.1088/0256-307X/39/8/080301
GENERAL |
Experimental Test of Contextuality Based on State Discrimination with a Single Qubit
Qiuxin Zhang1, Chenhao Zhu1, Yuxin Wang1, Liangyu Ding1, Tingting Shi1, Xiang Zhang1,2, Shuaining Zhang1,2*, and Wei Zhang1,2,3*
1Department of Physics, Renmin University of China, Beijing 100872, China
2Beijing Academy of Quantum Information Sciences, Beijing 100193, China
3Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
Cite this article:   
Qiuxin Zhang, Chenhao Zhu, Yuxin Wang et al  2022 Chin. Phys. Lett. 39 080301
Download: PDF(1130KB)   PDF(mobile)(1288KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Exploring quantum phenomena beyond predictions of any classical model has fundamental importance to understand the boundary of classical and quantum descriptions of nature. As a typical property that a quantum system behaves distinctively from a classical counterpart, contextuality has been studied extensively and verified experimentally in systems composed of at least three levels (qutrit). Here we extend the scope of experimental test of contextuality to a minimal quantum system of only two states (qubit) by implementing the minimum error state discrimination on a single $^{171}$Yb$^+$ ion. We observe a substantial violation of a no-go inequality derived by assuming non-contextuality, and firmly conclude that the measured results of state discrimination cannot be reconciled with any non-contextual description. We also quantify the contextual advantage of state discrimination and the tolerance against quantum noises.
Received: 04 May 2022      Editors' Suggestion Published: 16 July 2022
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/8/080301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I8/080301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiuxin Zhang
Chenhao Zhu
Yuxin Wang
Liangyu Ding
Tingting Shi
Xiang Zhang
Shuaining Zhang
and Wei Zhang
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Bell J S 1964 Physics 1 195
[3] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419
[4]Kochen S and Specker E P 1967 J. Math. Mech. 17 59
[5] Budroni C, Cabello A, Güuhne O, Kleinmann M and Larsson J 2021 arXiv:2102.13036 [quant-ph]
[6] Spekkens R W 2005 Phys. Rev. A 71 052108
[7] Zhang A, Xu H, Xie J, Zhang H, Smith B J, Kim M S and Zhang L 2019 Phys. Rev. Lett. 122 080401
[8] Qu D, Wang K, Xiao L, Zhan X and Xue P 2021 npj Quantum Inf. 7 154
[9] Jerger M, Reshitnyk Y, Oppliger M, Potočnik A, Mondal M, Wallraff A, Goodenough K, Wehner S, Juliusson K, Langford N K and Fedorov A 2016 Nat. Commun. 7 12930
[10] van Dam S B, Cramer J, Taminiau T H and Hanso R 2019 Phys. Rev. Lett. 123 050401
[11] Leupold F M, Malinowski M, Zhang C, Negnevitsky V, Cabello A and Alonso J 2018 Phys. Rev. Lett. 120 180401
[12] Wang P F, Zhang J H, Luan C Y, Um M, Wang Y, Qiao M, Xie T, Zhang J N, Cabello A and Kim K 2022 Sci. Adv. 8 eabk1660
[13] Zhang X, Um M, Zhang J, An S, Wang Y, Deng D L, Shen C, Duan L M and Kim K 2013 Phys. Rev. Lett. 110 070401
[14] Hasegawa Y, Loidl R, Badurek G, Baron M and Rauch H 2003 Nature 425 45
[15] Mermin N D 1990 Phys. Rev. Lett. 65 1838
[16] Peres A 1991 J. Phys. A 24 L175
[17] Cabello A 2008 Phys. Rev. Lett. 101 210401
[18] Kirchmair G, Zähringer F, Gerritsma R, Kleinmann M, Gühne O, Cabello A, Blatt R and Roos C F 2009 Nature 460 494
[19] Klyachko A A, Can M A, Binicioǧlu S and Shumovsky A S 2008 Phys. Rev. Lett. 101 020403
[20] Kleinmann M, Budroni C, Larsson J   Gühne O and Cabello A 2012 Phys. Rev. Lett. 109 250402
[21] Schmid D and Spekkens R W 2018 Phys. Rev. X 8 011015
[22] Pusey M F, Jonathan B and Terry R 2012 Nat. Phys. 8 475
[23] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[24] Bae J and Kwek L C 2015 J. Phys. A 48 083001
[25]Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, p 175
[26] Wootters W K and Zurek W H 1982 Nature 299 802
[27] Gisin N and signaling Q C W 1998 Phys. Lett. A 242 1
[28] Brunner N, Navascués M and Vértesi T 2013 Phys. Rev. Lett. 110 150501
[29] Konig R, Renner R and Schaffner C 2009 IEEE Trans. Inf. Theory 55 4337
[30] Helstrom C W 1969 J. Stat. Phys. 1 231
[31] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
[32] Olmschenk S, Younge K C, Moehring D L, Matsukevich D N, Maunz P and Monroe C 2007 Phys. Rev. A 76 052314
[33] Shen C and Duan L M 2012 New J. Phys. 14 053053
[34] Mazurek M D, Pusey M F, Kunjwal R, Resch K J and Spekkens R W 2016 Nat. Commun. 7 ncomms11780
[35] Mazurek M D, Pusey M F, Resch K J and Spekkens R W 2021 PRX Quantum 2 020302
[36] Knill E, Leibfried D, Reichle R, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S and Wineland D J 2008 Phys. Rev. A 77 012307
Related articles from Frontiers Journals
[1] Jie Xie, Li Zhou, Aonan Zhang, Huichao Xu, Man-Hong Yung, Ping Xu, Nengkun Yu, and Lijian Zhang. Entirety of Quantum Uncertainty and Its Experimental Verification[J]. Chin. Phys. Lett., 2021, 38(7): 080301
[2] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 080301
[3] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 080301
[4] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 080301
[5] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 080301
[6] Junzhao Liu, Yanjun Liu, Jing Lu. Complementarity via Minimum Error Measurement in a Two-Path Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 080301
[7] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 080301
[8] W.-B. Wang, X.-Y. Chang, F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L. Ouyang, X.-Z. Huang, Z.-Y. Zhang, H.-Y. Wang, L. He, L.-M. Duan. Realization of Quantum Maxwell's Demon with Solid-State Spins[J]. Chin. Phys. Lett., 2018, 35(4): 080301
[9] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 080301
[10] A. Ben-Israel, L. Knips, J. Dziewior, J. Meinecke, A. Danan, H. Weinfurter, L. Vaidman. An Improved Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2017, 34(2): 080301
[11] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 080301
[12] Zhi-Yuan Li. Time-Modulated Hamiltonian for Interpreting Delayed-Choice Experiments via Mach–Zehnder Interferometers[J]. Chin. Phys. Lett., 2016, 33(08): 080301
[13] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 080301
[14] SUN Jun, SUN Yong-Nan, LI Chuan-Feng, GUO Guang-Can. On Delay of the Delayed Choice Experiment[J]. Chin. Phys. Lett., 2015, 32(09): 080301
[15] XU Feng, WANG Li-Fei, CUI Xiao-Dong. Quantum Interference by Entangled Trajectories[J]. Chin. Phys. Lett., 2015, 32(08): 080301
Viewed
Full text


Abstract