CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Ultrafast Modulation of the Molten Metal Surface Tension under Femtosecond Laser Irradiation |
Chenhao Li, Hongtao Liang, Yang Yang*, Zhiyong Yu, Xin Zhang, Xiangming Ma, Wenliang Lu, Zhenrong Sun, and Ya Cheng* |
State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China |
|
Cite this article: |
Chenhao Li, Hongtao Liang, Yang Yang et al 2022 Chin. Phys. Lett. 39 077901 |
|
|
Abstract We predict ultrafast modulation of the pure molten metal surface stress fields under the irradiation of the single femtosecond laser pulse through the two-temperature model molecular-dynamics simulations. High-resolution and precision calculations are used to resolve the ultrafast laser-induced anisotropic relaxations of the pressure components on the time-scale comparable to the intrinsic liquid density relaxation time. The magnitudes of the dynamic surface tensions are found being modulated sharply within picoseconds after the irradiation, due to the development of the nanometer scale non-hydrostatic regime behind the exterior atomic layer of the liquid surfaces. The reported novel regulation mechanism of the liquid surface stress field and the dynamic surface tension hints at levitating the manipulation of liquid surfaces, such as ultrafast steering the surface directional transport and patterning.
|
|
Received: 17 March 2022
Published: 29 June 2022
|
|
PACS: |
79.20.Ds
|
(Laser-beam impact phenomena)
|
|
82.53.-k
|
(Femtochemistry)
|
|
68.03.Cd
|
(Surface tension and related phenomena)
|
|
61.20.Ja
|
(Computer simulation of liquid structure)
|
|
|
|
|
[1] | Ragelle H, Tibbitt M W, Wu S Y, Castillo M A, Cheng G Z, Gangadharan S P, Anderson D G, Cima M J, and Langer R 2018 Nat. Commun. 9 1184 |
[2] | Khairallah S A, Anderson A T, Rubenchik A, and King W E 2016 Acta Mater. 108 36 |
[3] | Terry S C, Jerman J H, and Angell J B 1979 IEEE Trans. Electron Devices 26 1880 |
[4] | de Gennes P G 1985 Rev. Mod. Phys. 57 827 |
[5] | Huh D, Matthews B D, Mammoto A, Montoya-Zavala M, Hsin H Y, and Ingber D E 2010 Science 328 1662 |
[6] | Kuo Y H, Nah S, He K, Hu T, and Lindenberg A M 2017 J. Mater. Chem. C 5 1522 |
[7] | Madéo J, Man M K L, Sahoo C, Campbell M, Pareek V, Wong E L, Al-Mahboob A, Chan N S, Karmakar A, Mariserla B M K, Li X Q, Heinz T F, Cao T, and Dani K M 2020 Science 370 1199 |
[8] | Yang T N, Wang B, Hu J M, and Chen L Q 2020 Phys. Rev. Lett. 124 107601 |
[9] | Sheng L, Zhang J, and Liu J 2014 Adv. Mater. 26 6036 |
[10] | Girot A, Petit J, Saiseau R, Guérin T, Chraibi H, Delabre U, and Delville J P 2019 Phys. Rev. Lett. 122 174501 |
[11] | Liu H, Wang Z, Gao L, Huang Y, Tang H, Zhao X, and Deng W 2021 Phys. Rev. Lett. 127 244502 |
[12] | Cash C E, Wang J, Martirossyan M M, Ludlow B K, Baptista A E, Brown N M, Weissler E J, Abacousnac J, and Gerbode S J 2018 Phys. Rev. Lett. 120 018002 |
[13] | Wei J K, Feng B, Ishikawa R, Yokoi T, Matsunaga K, Shibata N, and Ikuhara Y 2021 Nat. Mater. 20 951 |
[14] | Rosselló J M and Ohl C D 2021 Phys. Rev. Lett. 127 044502 |
[15] | Sugioka K and Cheng Y 2013 Ultrafast Laser Processing (Singapore: Jenny Stanford Publishing) |
[16] | Malinauskas M, Zukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V, Buividas R, and Juodkazis S 2016 Light: Sci. & Appl. 5 e16133 |
[17] | Saha S K, Wang D, Nguyen V H, Chang Y, Oakdale J S, and Chen S C 2019 Science 366 105 |
[18] | Zhigilei L V, Lin Z B, and Ivanov D S 2009 J. Phys. Chem. C 113 11892 |
[19] | Wu C P and Zhigilei L V 2014 Appl. Phys. A 114 11 |
[20] | Wu J, Tang M X, Zhao L R, Zhu P F, Jiang T, Zou X, Hong L, Luo S N, Xiang D, and Zhang J 2022 Proc. Natl. Acad. Sci. USA 119 e2111949119 |
[21] | Ivanov D S and Zhigilei L V 2003 Phys. Rev. Lett. 91 105701 |
[22] | Ivanov D S and Zhigilei L V 2003 Phys. Rev. B 68 064114 |
[23] | Chen J K, Tzou D Y, and Beraun J E 2006 Int. J. Heat Mass Transfer 49 307 |
[24] | Plimpton S 1995 J. Comput. Phys. 117 1 |
[25] | Zope R R and Mishin Y 2003 Phys. Rev. B 68 024102 |
[26] | Purja Pun G P and Mishin Y 2009 Philos. Mag. 89 3245 |
[27] | Lin Z, Zhigilei L V, and Celli V 2008 Phys. Rev. B 77 075133 |
[28] | Kaganov M I, Lifshitz I M, and Tanatarov L V 1957 J. Exptl. Theoret. Phys. 31 232 |
[29] | Rethfeld B, Ivanov D S, Garcia M E, and Anisimov S I 2017 J. Phys. D 50 193001 |
[30] | Upadhyay A K, Inogamov N A, Rethfeld B, and Urbassek H M 2008 Phys. Rev. B 78 045437 |
[31] | Molina J M, Voytovych R, Louis E, and Eustathopoulos N 2007 Int. J. Adhesion Adhesives 27 394 |
[32] | Zhou K, Wang H P, Chang J, and Wei B 2015 Chem. Phys. Lett. 639 105 |
[33] | Wang H P, Chang J, and Wei B 2009 J. Appl. Phys. 106 033506 |
[34] | Kirkwood J G and Buff F P 1949 J. Chem. Phys. 17 338 |
[35] | Yuan Z F, Liang H T, Xia C J, Laird B B, Gong X G, and Yang Y 2022 in preparation |
[36] | Shugaev M V, Gnilitskyi I, Bulgakova N M, and Zhigilei L V 2017 Phys. Rev. B 96 205429 |
[37] | Rowlinson J S and Widom B 1982 Molecular Theory Of Capillarity (Oxford: Oxford University Press) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|