CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
High-Temperature Superconducting YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ Josephson Junction Fabricated with a Focused Helium Ion Beam |
Ziwen Chen1,2,3, Yulong Li1,2,3, Rui Zhu4, Jun Xu4, Tiequan Xu1,2,3, Dali Yin1,2,3, Xinwei Cai1,2,3, Yue Wang1,2,3, Jianming Lu1,2,3, Yan Zhang1,2,3*, and Ping Ma1,2,3* |
1Applied Superconductivity Research Center, Peking University, Beijing 100871, China 2State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871, China 3School of Physics, Peking University, Beijing 100871, China 4Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
|
|
Cite this article: |
Ziwen Chen, Yulong Li, Rui Zhu et al 2022 Chin. Phys. Lett. 39 077402 |
|
|
Abstract As a newly developed method for fabricating Josephson junctions, a focused helium ion beam has the advantage of producing reliable and reproducible junctions. We fabricated Josephson junctions with a focused helium ion beam on our 50 nm YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ (YBCO) thin films. We focused on the junction with irradiation doses ranging from 100 to 300 ions/nm and demonstrated that the junction barrier can be modulated by the ion dose and that within this dose range, the junctions behave like superconductor–normal-conductor–superconductor junctions. The measurements of the $I$–$V$ characteristics, Fraunhofer diffraction pattern, and Shapiro steps of the junctions clearly show AC and DC Josephson effects. Our findings demonstrate high reproducibility of junction fabrication using a focused helium ion beam and suggest that commercial devices based on this nanotechnology could operate at liquid nitrogen temperatures.
|
|
Received: 22 April 2022
Editors' Suggestion
Published: 18 June 2022
|
|
PACS: |
74.72.-h
|
(Cuprate superconductors)
|
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
|
|
|
[1] | Likharev K K and Semenov V K 1991 IEEE Trans. Appl. Supercond. 1 3 |
[2] | Ofek N, Petrenko A, Heeres R, Reinhold P, Leghtas Z, Vlastakis B, Liu Y H, Frunzio L, Girvin S M, Jiang L, Mirrahimi M, Devoret M H, and Schoelkopf R J 2016 Nature 536 441 |
[3] | Ahonen A I, Hamalainen M S, Kajola M J, Knuutila J E T, Laine P P, Lounasmaa O V, Parkkonen L T, Simola J T, and Tesche C D 1993 Phys. Scr. T49A 198 |
[4] | Wang S G, Dai Y D, Zeng X H, Zheng P H, Wang S H, Xiong G C, Lian G J, and Gan Z H 1995 Chin. Phys. Lett. 12 229 |
[5] | Kislinskii Y V, Zhao B R, Wu P J, Peng Z Q, Chen Y F, Yang T, Chen L, Sun J J, Xu B, Wu F, Zhou Y L, Li L, Zhao Z X, and Stepantsov E A 1996 Chin. Phys. Lett. 13 390 |
[6] | Chen G H, Wang J, Zhao S P, Han B, Xu F Z, and Yang Q S 2001 Chin. Phys. Lett. 18 106 |
[7] | Hirata K, Yamamoto K, Iijima K, Takada J, Terashima T, Bando Y, and Mazaki H 1990 Appl. Phys. Lett. 56 683 |
[8] | Faley M I, Poppe U, Dunin-Borkowski R E, Schiek M, Boers F, Chocholacs H, Dammers J, Eich E, Shah N J, Ermakov A B, Slobodchikov V Y, Maslennikov Y V, and Koshelets V P 2013 IEEE Trans. Appl. Supercond. 23 1600705 |
[9] | Koch R H, Umbach C P, Clark G J, Chaudhari P, and Laibowitz R B 1987 Appl. Phys. Lett. 51 200 |
[10] | Chen K, Cybart S A, and Dynes R C 2004 Appl. Phys. Lett. 85 2863 |
[11] | Cybart S A, Cho E Y, Wong T J, Wehlin B H, Ma M K, Huynh C, and Dynes R C 2015 Nat. Nanotechnol. 10 598 |
[12] | Hlawacek G and Gölzhäuser A 2016 Helium Ion Microscopy (Cham: Springer International Publishing AG) |
[13] | Cai H, Li H, Cho E Y, LeFebvre J C, and Cybart S A 2021 IEEE Trans. Appl. Supercond. 31 7200205 |
[14] | Cho E Y, LeFebvre J C, Dynes R C, and Cybart S A 2020 IEEE Trans. Appl. Supercond. 30 1100403 |
[15] | Cortez A T, Cho E Y, Li H, Cunnane D, Karasik B, and Cybart S A 2019 IEEE Trans. Appl. Supercond. 29 1102305 |
[16] | Keenan S T, Young J A, Foley C P, and Du J 2010 Supercond. Sci. Technol. 23 025029 |
[17] | LeFebvre J C and Cybart S A 2021 IEEE Trans. Appl. Supercond. 31 1100404 |
[18] | Müller B, Karrer M, Limberger F, Becker M, Schroppel B, Burkhardt C J, Kleiner R, Goldobin E, and Koelle D 2019 Phys. Rev. Appl. 11 044082 |
[19] | Ambegaokar V and Halperin B I 1969 Phys. Rev. Lett. 22 1364 |
[20] | Likharev K K 1979 Rev. Mod. Phys. 51 101 |
[21] | Rosenthal P A, Beasley M R, Char K, Colclough M S, and Zaharchuk G 1991 Appl. Phys. Lett. 59 3482 |
[22] | Barone A and Paterno G 1982 Physics and Applications of the Josephson Effect (New York: Wiley) |
[23] | Shapiro S 1963 Phys. Rev. Lett. 11 80 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|