CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Continuously Doping Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$ into Electron-Doped Superconductor by CaH$_{2}$ Annealing Method |
Jin Zhao1,2†, Yu-Lin Gan1,2†, Guang Yang1,2†, Yi-Gui Zhong1,2,3, Cen-Yao Tang1,2, Fa-Zhi Yang1,2, Giao Ngoc Phan1, Qiang-Tao Sui1,2, Zhong Liu1, Gang Li1, Xiang-Gang Qiu1, Qing-Hua Zhang1, Jie Shen1, Tian Qian1,4, Li Lu1, Lei Yan1, Gen-Da Gu5, and Hong Ding1,2,4* |
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China 3Institute for Solid State Physics, University of Tokyo, Chiba 277-8581, Japan 4Songshan Lake Materials Laboratory, Dongguan 523808, China 5Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
|
|
Cite this article: |
Jin Zhao, Yu-Lin Gan, Guang Yang et al 2022 Chin. Phys. Lett. 39 077403 |
|
|
Abstract As a typical hole-doped cuprate superconductor, Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$(Bi2212) carrier doping is mostly determined by its oxygen content. Traditional doping methods can regulate its doping level within the range of hole doping. Here we report the first application of CaH$_{2}$ annealing method in regulating the doping level of Bi2212. By continuously controlling the anneal time, a series of differently doped samples can be obtained. The combined experimental results of x-ray diffraction, scanning transmission electron microscopy, resistance and Hall measurements demonstrate that the CaH$_{2}$ induced topochemical reaction can effectively change the oxygen content of Bi2212 within a very wide range, even switching from hole doping to electron doping. We also found evidence of a low-$T_{\rm c}$ superconducting phase in the electron doping side.
|
|
Received: 19 May 2022
Express Letter
Published: 20 June 2022
|
|
|
|
|
|
[1] | Bednorz J G and Müller K A 1986 Z. Phys. B 64 189 |
[2] | Tokura Y, Takagi H, and Uchida S 1989 Nature 337 345 |
[3] | Jang S W, Sakakibara H, Kino H, Kotani T, Kuroki K, and Han M J 2016 Sci. Rep. 6 33397 |
[4] | Rybicki D, Jurkutat M, Reichardt S, Kapusta C, and Haase J 2016 Nat. Commun. 7 11413 |
[5] | Jin C Q, Laffez P, Tatsuki T, Tamura T, Adachi S, Koshizuka N Y H, Tanaka S, and Wu X J 1995 Nature 375 301 |
[6] | Mazumdar S 2018 Phys. Rev. B 98 205153 |
[7] | Naito M, Krockenberger Y, Ikeda A, and Yamamoto H 2016 Physica C 523 28 |
[8] | Weber C, Haule K, and Kotliar G 2010 Nat. Phys. 6 574 |
[9] | Li Y M, Tabis W, Tang Y, Yu G, Jaroszynski J, Barišić N, and Greven M 2019 Sci. Adv. 5 eaap7349 |
[10] | Hirsch J E and Marsiglio F 2019 Physica C 564 29 |
[11] | Segawa K, Kofu M, Lee S H, Tsukada I, Hiraka H, Fujita M, Chang S, Yamada K, and Ando Y 2010 Nat. Phys. 6 579 |
[12] | Adachi T, Kawamata T, and Koike Y 2017 Condens. Matter 2 23 |
[13] | Hu C, Zhao J F, Gao Q, Yan H T, Rong H T, Huang J W, Liu J, C, Y Q, Li C, Chen H, Zhao L, Liu G D, Jin C Q, Xu Z Y, Xiang T, and Zhou X J 2021 Nat. Commun. 12 1356 |
[14] | Segawa K and Ando Y 2006 Phys. Rev. B 74 100508 |
[15] | Zhong Y, Fan J Q, Wang R F, Wang S Z, Zhang X F, Zhu Y Y, Dou Z Y, Yu X Q, Wang Y, Zhang D, Zhu J, Song C L, Ma X C, and Xue Q K 2020 Phys. Rev. Lett. 125 077002 |
[16] | Zeng S W, Wang X, Lü W M, Huang Z, Motapothula M, Liu Z Q, Zhao Y L, Annadi A, Dhar S, Mao H, Chen W, Venkatesan T, and A 2012 Phys. Rev. B 86 045124 |
[17] | Zhong Y G, Guan J Y, Shi X, Zhao J, Rao Z C, Tang C Y, Liu H J, Weng Z Y, Wang Z Q, Gu G D, Qian T, Sun Y J, and Ding H 2018 Phys. Rev. B 98 140507 |
[18] | Zhong Y G, Guan J Y, Zhao J, Tang C Y, Rao Z C, Liu H J, Zhang J H, Li S, Weng Z Y, Gu G D, Sun Y J, and Ding H 2019 Phys. Rev. B 100 184504 |
[19] | Tang C Y, Lin Z F, Zhang J X, Guo X C, Guan J Y, Gao S Y, Rao Z C, Zhao J, Huang Y B, Qian T, Weng Z Y, Jin K, Sun Y J, and Ding H 2021 Phys. Rev. B 104 155125 |
[20] | Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624 |
[21] | Wen J S, Xu Z J, Xu G Y, Hücker M, Tranquada J M, and Gu G D 2008 J. Cryst. Growth 310 1401 |
[22] | Jindal A, Jangade D A, Kumar N, Vaidya J, Das I, Bapat R, Parmar J, Chalke B A, Thamizhavel A, and Deshmukh M M 2017 Sci. Rep. 7 3295 |
[23] | Song D S, Zhang X F, Lian C S L H, Alexandrou I, Lazić I, Bosch E G T, Zhang D, Wang L L, Yu R, Cheng Z Y, Song C L, Ma X C, Duan W H, Xue Q K, and Zhu J 2019 Adv. Funct. Mater. 29 1903843 |
[24] | Presland M R, Tallon J L, Buckley R G, Liu R S, and Flower N E 1991 Physica C 176 95 |
[25] | Tallon J L, Bernhard C, Shaked H, Hitterman R L, and Jorgensen J D 1995 Phys. Rev. B 51 12911 |
[26] | Liu J, Zhao L, Gao Q et al. 2019 Chin. Phys. B 28 077403 |
[27] | Quaranta Q, Gades L M, Xue C, Divan R, Patel U M, Guruswamy T, and Miceli A 2021 arXiv:2111.02503 [cond-mat.mtrl-sci] |
[28] | Thiery N, Naletov V V, Vila L, Marty A, Brenac A, Jacquot J F, Loubens G D, Viret M, Anane A, Cros V, Youssef J B, Beaulieu N, Demidov V E, Divinskiy B, Demokritov S O, and Klein O 2018 Phys. Rev. B 97 064422 |
[29] | Prakash O, Kumar A, Thamizhavel A, and Ramakrishnan S 2017 Science 355 52 |
[30] | Medina J C, Bizarro M, Silva-Bermudez P, Giorcelli M, Tagliaferro A, and Rodil S E 2016 Thin Solid Films 612 72 |
[31] | Thaowonkaew S, Chao-moo W, Nontra-udorn R, Vora-ud A, and Seetawan T 2017 Mater. Today Proc. 4 6592 |
[32] | Piriou A, Giannini E, Fasano Y, Senatore C, and Fischer Y 2010 Phys. Rev. B 81 144517 |
[33] | Adachi S, Usui T, Takahashi K, Kosugi K, Watanabe T, Nishizaki T, Adachi T, Kimura S, Sato K, Suzuki K M, Fujita M, Yamada K, and Fujii T 2015 Phys. Procedia 65 53 |
[34] | Altın S, Aksan M A, YakıN M E, and BalcıY 2010 J. Alloys Compd. 502 16 |
[35] | Tian M L, Wang J, Ning W, Mallouk T E, and Chan M H W 2015 Nano Lett. 15 1487 |
[36] | Li Y F, Wang E Y, Zhu X Y, and Wen H H 2017 Phys. Rev. B 95 024510 |
[37] | Koza J A, Bohannan E W, and Switzer J A 2013 ACS Nano 7 9940 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|