PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Transformation Plasma Physics |
Zeren Zhang and Jiping Huang* |
Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China |
|
Cite this article: |
Zeren Zhang and Jiping Huang 2022 Chin. Phys. Lett. 39 075201 |
|
|
Abstract Plasma technology has widespread applications in many fields, whereas the methods for manipulating plasma transport are limited to magnetic control. In this study, we used a simplified diffusion-migration approach to describe plasma transport. The feasibility of the transformation theory for plasma transport was demonstrated. As potential applications, we designed three model devices capable of cloaking, concentrating, and rotating plasmas without disturbing the density profile of plasmas in the background. This research may help advance plasma technology in practical fields, such as medicine and chemistry.
|
|
Received: 24 April 2022
Editors' Suggestion
Published: 14 June 2022
|
|
PACS: |
52.65.-y
|
(Plasma simulation)
|
|
52.25.Fi
|
(Transport properties)
|
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
|
|
|
[1] | Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New Jersey: Wiley Interscience) |
[2] | Li M, Wang Z, Xu R, Zhang X, Chen Z, and Wang Q 2021 Aerosp. Sci. Technol. 117 106952 |
[3] | Liang H, Ming F, and Alshareef H N 2018 Adv. Energy Mater. 8 1801804 |
[4] | Samal S 2017 J. Cleaner Prod. 142 3131 |
[5] | Tamura H, Tetsuka T, Kuwahara D, and Shinohara S 2020 IEEE Trans. Plasma Sci. 48 3606 |
[6] | Pendry J B, Schurig D, and Smith D R 2006 Science 312 1780 |
[7] | Leonhardt U 2006 Science 312 1777 |
[8] | Guenneau S and Puvirajesinghe T M 2013 J. R. Soc. Interface 10 20130106 |
[9] | Fan C Z, Gao Y, and Huang J P 2008 Appl. Phys. Lett. 92 251907 |
[10] | Chen T, Weng C N, and Chen J S 2008 Appl. Phys. Lett. 93 114103 |
[11] | Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 120501 |
[12] | Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 080502 |
[13] | Huang J P 2020 ES Energy & Environ. 7 1 |
[14] | Xu L J, Yang S, Dai G L, and Huang J P 2020 ES Energy & Environ. 7 65 |
[15] | Hu R, Zhou S, Li Y, Lei D Y, Luo X, and Qiu C W 2018 Adv. Mater. 30 1707237 |
[16] | Hu R, Huang S, Wang M, Luo X, Shiomi J, and Qiu C W 2019 Adv. Mater. 31 1807849 |
[17] | Zhang J, Huang S, and Hu R 2021 Chin. Phys. Lett. 38 010502 |
[18] | Chen F F 1974 Introduction to Plasma Physics and Controlled Fusion (Switzerland: Springer) |
[19] | Cui S, Wu Z, Lin H, Xiao S, Zheng B, Liu L, An X, Fu R K Y, Tian X, Tan W, and Chu P K 2019 J. Appl. Phys. 125 063302 |
[20] | Dai G L 2021 Front. Phys. 16 53301 |
[21] | Zhang Z, Xu L, and Huang J 2022 Adv. Theory Simul. 5 2100375 |
[22] | Huang J P 2020 Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials (Singapore: Springer) |
[23] | Lu X and Ostrikov K 2018 Appl. Phys. Rev. 5 031102 |
[24] | Rodríguez J A, Abdalla A I, Wang B, Lou B, Fan S, and Cappelli M A 2021 Phys. Rev. Appl. 16 014023 |
[25] | Inami C, Kabe Y, Noyori Y, Iwai A, Bambina A, Miyagi S, and Sakai O 2021 J. Appl. Phys. 130 043301 |
[26] | Zhou X, Xu G, and Zhang H 2021 Compos. Struct. 267 113866 |
[27] | Restrepo-Flórez J M and Maldovan M 2016 Sci. Rep. 6 21971 |
[28] | Hu R, Iwamoto S, Feng L, Ju S, Hu S, Ohnishi M, Nagai N, Hirakawa K, and Shiomi J 2020 Phys. Rev. X 10 021050 |
[29] | Narayana S and Sato Y 2012 Adv. Mater. 24 71 |
[30] | Lan C, Yang Y, Geng Z, Li B, and Zhou J 2015 Sci. Rep. 5 16416 |
[31] | Huang C W, Chen Y C, and Nishimura Y 2015 IEEE Trans. Plasma Sci. 43 675 |
[32] | Yu Z Z, Xiong G H, and Zhang L F 2021 Front. Phys. 16 43201 |
[33] | Xing G, Zhao W, Hu R, and Luo X 2021 Chin. Phys. Lett. 38 124401 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|