Chin. Phys. Lett.  2022, Vol. 39 Issue (7): 073201    DOI: 10.1088/0256-307X/39/7/073201
ATOMIC AND MOLECULAR PHYSICS |
Reconciliation of Theoretical Lifetimes of the $5s5p\,^3\!P^{\rm o}_2$ Metastable State for $^{88}$Sr with Measurement: The Role of the Blackbody-Radiation-Induced Decay
Benquan Lu1, Xiaotong Lu1, Jiguang Li2*, and Hong Chang1,3*
1National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China
2Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
3The University of Chinese Academy of Sciences, Beijing 100088, China
Cite this article:   
Benquan Lu, Xiaotong Lu, Jiguang Li et al  2022 Chin. Phys. Lett. 39 073201
Download: PDF(584KB)   PDF(mobile)(729KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We conducted measurement and calculation to resolve the long-standing large discrepancy in the metastable state lifetime for the $^{88}$Sr atom between theoretical and experimental results. The present lifetime $\tau = 830_{-240}^{+600}$ s, measured using the magneto-optical trap as a photon amplifier to detect the weak decay events, is approximately 60% larger than the previous experimental value $\tau = 520_{-140}^{+310}$ s. By considering the electron correlation effects in the framework of the multiconfiguration Dirac–Hartree–Fock theory, we obtained a theoretical lifetime of 1079(54) s, which lies in the range of measurements with error bars. Furthermore, we considered the higher-order electron correlation and Breit interaction to control the uncertainty of the theoretical calculation. The significant improvement in the agreement between calculations and measurements is attributed to the updated blackbody radiation-induced decay rate.
Received: 07 May 2022      Published: 27 June 2022
PACS:  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
  31.15.V- (Electron correlation calculations for atoms, ions and molecules)  
  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
  67.85.-d (Ultracold gases, trapped gases)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/7/073201       OR      https://cpl.iphy.ac.cn/Y2022/V39/I7/073201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Benquan Lu
Xiaotong Lu
Jiguang Li
and Hong Chang
[1] Katori H, Ido T, Isoya Y, and Kuwata-Gonokami M 2001 AIP Conf. Proc. 551 382
[2] Grünert J and Hemmerich A 2002 Phys. Rev. A 65 041401
[3] Yang C Y, Halder P, Appel O, Hansen D, and Hemmerich A 2007 Phys. Rev. A 76 033418
[4] Riedmann M, Kelkar H, Wübbena T, Pape A, Kulosa A, Zipfel K, Fim D, Rühmann S, Friebe J, Ertmer W, and Rasel E 2012 Phys. Rev. A 86 043416
[5] Sorrentino F, Ferrari G, Poli N, Drullinger R, and Tino G M 2006 Mod. Phys. Lett. B 20 1287
[6] Ushijima I, Takamoto M, Das M, Ohkubo T, and Katori H 2015 Nat. Photon. 9 185
[7] Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Häfner S, Vogt S, Sterr U, and Lisdat C 2014 New J. Phys. 16 073023
[8] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, and Ludlow A D 2018 Nature 564 87
[9] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, and Ye J 2019 Nat. Photon. 13 714
[10] Hill I R, Hobson R, Bowden W, Bridge E M, Donnellan S, Curtis E A, and Gill P 2016 J. Phys.: Conf. Ser. 723 012019
[11] Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah O N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, and Ye J 2017 Science 358 90
[12] Häfner S, Falke S, Grebing C, Vogt S, Legero T, Merimaa M, Lisdat C, and Sterr U 2015 Opt. Lett. 40 2112
[13] Hashiguchi K, Akatsuka T, Ohmae N, Takamoto M, and Katori H 2019 Phys. Rev. A 100 042513
[14] Hobson R, Bowden W, Vianello A, Hill I R, and Gill P 2020 Phys. Rev. A 101 013420
[15] Yamaguchi A, Uetake S, and Takahashi Y 2008 Appl. Phys. B 91 57
[16] Yu D 2012 Phys. Rev. A 86 032703
[17] Uetake S, Murakami R, Doyle J M, and Takahashi Y 2012 Phys. Rev. A 86 032712
[18] Bhongale S G, Mathey L, Zhao E, Yelin S F, and Lemeshko M 2013 Phys. Rev. Lett. 110 155301
[19] Daley A J, Boyd M M, Ye J, and Zoller P 2008 Phys. Rev. Lett. 101 170504
[20] Derevianko A 2001 Phys. Rev. Lett. 87 023002
[21] Liu Y, Andersson M, Brage T, Zou Y, and Hutton R 2007 Phys. Rev. A 75 014502
[22] Yasuda M and Katori H 2004 Phys. Rev. Lett. 92 153004
[23] Kelly J F, Harris M, and Gallagher A 1988 Phys. Rev. A 37 2354
[24] Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, and Chang H 2018 Chin. Phys. B 27 023701
[25] Safronova M S, Porsev S G, Safronova U I, Kozlov M G, and Clark C W 2013 Phys. Rev. A 87 012509
[26] Bjorkholm J E 1988 Phys. Rev. A 38 1599
[27] Redondo C, Sánchez Rayo M N, Ecija P, Husain D, and Castaño F 2004 Chem. Phys. Lett. 392 116
[28] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, and Ye J 2015 Nat. Commun. 6 6896
[29]Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (New York: Springer) p 518
[30] Fischer C F, Godefroid M, Brage T, Jönsson P, and Gaigalas G 2016 J. Phys. B 49 182004
[31]Johnson W R 2007 Atomic Structure Theory-Lectures on Atomic Physics (New York: Springer) p 185
[32] Olsen J, Godefroid M R, Jönsson P, Malmqvist P Å, and Fischer C F 1995 Phys. Rev. E 52 4499
[33] Verdebout S, Jönsson P, Gaigalas G, Godefroid M, and Fischer C F 2010 J. Phys. B 43 074017
[34] Lu B, Zhang T, Chang H, Li J, Wu Y, and Wang J 2019 Phys. Rev. A 100 012504
[35] Fischer C F, Gaigalas G, Jönsson P, and Bieroń J 2019 Comput. Phys. Commun. 237 184
[36] Sansonetti J E and Nave G 2010 J. Phys. Chem. Ref. Data 39 033103
Related articles from Frontiers Journals
[1] Canzhu Tan, Fachao Hu, Zhijing Niu, Yuhai Jiang, Matthias Weidemüller, and Bing Zhu. Measurements of Dipole Moments for the $5{s}5{p}\,^3\!{P}_1$–$5{s}n{s}\, ^3\!{S}_1$ Transitions via Autler–Townes Spectroscopy[J]. Chin. Phys. Lett., 2022, 39(9): 073201
[2] Juan-Juan Cao, Ting Gong, Zhong-Hao Li, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Transition Dipole Moment Measurements of Ultracold Photoassociated $^{85}$Rb$^{133}$Cs Molecules by Depletion Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(10): 073201
[3] Peng Peng, Liang-hui Huang, Dong-hao Li, Peng-jun Wang, Zeng-ming Meng, Jing Zhang. Influence on the Lifetime of $^{87}$Rb Bose–Einstein Condensation for Far-Detuning Single-Frequency Lasers with Different Phase Noises[J]. Chin. Phys. Lett., 2018, 35(6): 073201
[4] CAI Juan, YU Wei-Wei, ZHANG Nan. The Scaling Law in the Fine-Structure Splitting of 1s2np States for the Lithium Isoelectronic Sequence[J]. Chin. Phys. Lett., 2014, 31(09): 073201
[5] CHEN Jie, ZHANG Hao, BAO Shan-Xia, WANG Li-Mei, ZHANG Lin-Jie, LI Chang-Yong, ZHAO Jian-Ming, JIA Suo-Tang. High-l Rydberg States' Interference Using a Double-Pulse Electric Field[J]. Chin. Phys. Lett., 2014, 31(2): 073201
[6] LONG Yun, XIONG Zhuan-Xian, ZHANG Xi, ZHANG Meng-Jiao, LÜ Bao-Long, HE Ling-Xiang. Observation of Photoassociation Spectra of Ultracold 174Yb Atoms at 1S03P1 Inter-Combination Line[J]. Chin. Phys. Lett., 2013, 30(7): 073201
[7] GUO Jian, WANG Yan-Hui. Analysis of Laser-Diode and Lamp Optical Pumping for a Rubidium Beam[J]. Chin. Phys. Lett., 2013, 30(2): 073201
[8] FAN Jian-Zhong, ZHANG Deng-Hong, CHANG Zhi-Wei, SHI Ying-Long, DONG Chen-Zhong. Energy-Crossing and Its Effect on Lifetime of the 4s24p 2P3/2 Level for Highly Charged Ga-Like Ions[J]. Chin. Phys. Lett., 2012, 29(7): 073201
[9] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 073201
[10] SHEN Li, WANG Lei, YANG Hai-Feng, LIU Xiao-Jun, LIU Hong-Ping** . Lifetime Measurement for 6snp Rydberg States of Barium[J]. Chin. Phys. Lett., 2011, 28(4): 073201
[11] WANG De-Hua. Corrigendum: “Extracting Closed Classical Orbits from Quantum Recurrence Spectra of a Non-Hydrogenic Atom in Parallel Electric and Magnetic Fields”[J]. Chin. Phys. Lett., 2010, 27(8): 073201
[12] GAO Xiang, CHEN Shao-Hao, LI Jia-Ming,. Finite Space Complete Basis Method: Precision Computation of High-Resolution Spectrum near Ionization Threshold[J]. Chin. Phys. Lett., 2009, 26(1): 073201
[13] BIAN Xue-Bin, LIU Hong-Ping, SHI Ting-Yun. A Time-Dependent Approach to High-Resolution Photoabsorption Spectrum of Rydberg Atoms in Magnetic Fields[J]. Chin. Phys. Lett., 2008, 25(6): 073201
[14] LI Ji-Guang, DONG Chen-Zhong, DING Xiao-Bin. Resonance Energies, Absorption Oscillator Strengths and Ionization Potentials for the Element Hassium[J]. Chin. Phys. Lett., 2007, 24(1): 073201
[15] CHEN Shao-Hao, LI Jia-Ming,. Real-Space Wave-Packet Propagation Method: Application to Photoabsorption Processes of Hydrogen Atoms[J]. Chin. Phys. Lett., 2006, 23(10): 073201
Viewed
Full text


Abstract