ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Reconciliation of Theoretical Lifetimes of the $5s5p\,^3\!P^{\rm o}_2$ Metastable State for $^{88}$Sr with Measurement: The Role of the Blackbody-Radiation-Induced Decay |
Benquan Lu1, Xiaotong Lu1, Jiguang Li2*, and Hong Chang1,3* |
1National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China 2Institute of Applied Physics and Computational Mathematics, Beijing 100088, China 3The University of Chinese Academy of Sciences, Beijing 100088, China
|
|
Cite this article: |
Benquan Lu, Xiaotong Lu, Jiguang Li et al 2022 Chin. Phys. Lett. 39 073201 |
|
|
Abstract We conducted measurement and calculation to resolve the long-standing large discrepancy in the metastable state lifetime for the $^{88}$Sr atom between theoretical and experimental results. The present lifetime $\tau = 830_{-240}^{+600}$ s, measured using the magneto-optical trap as a photon amplifier to detect the weak decay events, is approximately 60% larger than the previous experimental value $\tau = 520_{-140}^{+310}$ s. By considering the electron correlation effects in the framework of the multiconfiguration Dirac–Hartree–Fock theory, we obtained a theoretical lifetime of 1079(54) s, which lies in the range of measurements with error bars. Furthermore, we considered the higher-order electron correlation and Breit interaction to control the uncertainty of the theoretical calculation. The significant improvement in the agreement between calculations and measurements is attributed to the updated blackbody radiation-induced decay rate.
|
|
Received: 07 May 2022
Published: 27 June 2022
|
|
PACS: |
32.70.Cs
|
(Oscillator strengths, lifetimes, transition moments)
|
|
31.15.V-
|
(Electron correlation calculations for atoms, ions and molecules)
|
|
31.15.ag
|
(Excitation energies and lifetimes; oscillator strengths)
|
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
|
|
|
[1] | Katori H, Ido T, Isoya Y, and Kuwata-Gonokami M 2001 AIP Conf. Proc. 551 382 |
[2] | Grünert J and Hemmerich A 2002 Phys. Rev. A 65 041401 |
[3] | Yang C Y, Halder P, Appel O, Hansen D, and Hemmerich A 2007 Phys. Rev. A 76 033418 |
[4] | Riedmann M, Kelkar H, Wübbena T, Pape A, Kulosa A, Zipfel K, Fim D, Rühmann S, Friebe J, Ertmer W, and Rasel E 2012 Phys. Rev. A 86 043416 |
[5] | Sorrentino F, Ferrari G, Poli N, Drullinger R, and Tino G M 2006 Mod. Phys. Lett. B 20 1287 |
[6] | Ushijima I, Takamoto M, Das M, Ohkubo T, and Katori H 2015 Nat. Photon. 9 185 |
[7] | Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Häfner S, Vogt S, Sterr U, and Lisdat C 2014 New J. Phys. 16 073023 |
[8] | McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, and Ludlow A D 2018 Nature 564 87 |
[9] | Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, and Ye J 2019 Nat. Photon. 13 714 |
[10] | Hill I R, Hobson R, Bowden W, Bridge E M, Donnellan S, Curtis E A, and Gill P 2016 J. Phys.: Conf. Ser. 723 012019 |
[11] | Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah O N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, and Ye J 2017 Science 358 90 |
[12] | Häfner S, Falke S, Grebing C, Vogt S, Legero T, Merimaa M, Lisdat C, and Sterr U 2015 Opt. Lett. 40 2112 |
[13] | Hashiguchi K, Akatsuka T, Ohmae N, Takamoto M, and Katori H 2019 Phys. Rev. A 100 042513 |
[14] | Hobson R, Bowden W, Vianello A, Hill I R, and Gill P 2020 Phys. Rev. A 101 013420 |
[15] | Yamaguchi A, Uetake S, and Takahashi Y 2008 Appl. Phys. B 91 57 |
[16] | Yu D 2012 Phys. Rev. A 86 032703 |
[17] | Uetake S, Murakami R, Doyle J M, and Takahashi Y 2012 Phys. Rev. A 86 032712 |
[18] | Bhongale S G, Mathey L, Zhao E, Yelin S F, and Lemeshko M 2013 Phys. Rev. Lett. 110 155301 |
[19] | Daley A J, Boyd M M, Ye J, and Zoller P 2008 Phys. Rev. Lett. 101 170504 |
[20] | Derevianko A 2001 Phys. Rev. Lett. 87 023002 |
[21] | Liu Y, Andersson M, Brage T, Zou Y, and Hutton R 2007 Phys. Rev. A 75 014502 |
[22] | Yasuda M and Katori H 2004 Phys. Rev. Lett. 92 153004 |
[23] | Kelly J F, Harris M, and Gallagher A 1988 Phys. Rev. A 37 2354 |
[24] | Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, and Chang H 2018 Chin. Phys. B 27 023701 |
[25] | Safronova M S, Porsev S G, Safronova U I, Kozlov M G, and Clark C W 2013 Phys. Rev. A 87 012509 |
[26] | Bjorkholm J E 1988 Phys. Rev. A 38 1599 |
[27] | Redondo C, Sánchez Rayo M N, Ecija P, Husain D, and Castaño F 2004 Chem. Phys. Lett. 392 116 |
[28] | Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, and Ye J 2015 Nat. Commun. 6 6896 |
[29] | Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (New York: Springer) p 518 |
[30] | Fischer C F, Godefroid M, Brage T, Jönsson P, and Gaigalas G 2016 J. Phys. B 49 182004 |
[31] | Johnson W R 2007 Atomic Structure Theory-Lectures on Atomic Physics (New York: Springer) p 185 |
[32] | Olsen J, Godefroid M R, Jönsson P, Malmqvist P Å, and Fischer C F 1995 Phys. Rev. E 52 4499 |
[33] | Verdebout S, Jönsson P, Gaigalas G, Godefroid M, and Fischer C F 2010 J. Phys. B 43 074017 |
[34] | Lu B, Zhang T, Chang H, Li J, Wu Y, and Wang J 2019 Phys. Rev. A 100 012504 |
[35] | Fischer C F, Gaigalas G, Jönsson P, and Bieroń J 2019 Comput. Phys. Commun. 237 184 |
[36] | Sansonetti J E and Nave G 2010 J. Phys. Chem. Ref. Data 39 033103 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|