Chin. Phys. Lett.  2022, Vol. 39 Issue (7): 070303    DOI: 10.1088/0256-307X/39/7/070303
GENERAL |
Semi-Measurement-Device-Independent Quantum State Tomography
Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang*
Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Cite this article:   
Jian Li, Jia-Li Zhu, Jiang Gao et al  2022 Chin. Phys. Lett. 39 070303
Download: PDF(982KB)   PDF(mobile)(1073KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As a fundamental tool in the quantum information field, quantum state tomography can be used to reconstruct any unknown state. Generally, it needs a tomographically complete set of measurements, such that all measurements are fully characterized. Here, we propose a semi-measurement-device-independent quantum state tomography protocol, which only needs one characterized measurement and a trusted ancillary system. Furthermore, we perform corresponding experiments using linear optics. Our results show that the average state fidelity is as high as 0.973, verifying the effectiveness of the scheme.
Received: 23 March 2022      Editors' Suggestion Published: 27 June 2022
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/7/070303       OR      https://cpl.iphy.ac.cn/Y2022/V39/I7/070303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian Li
Jia-Li Zhu
Jiang Gao
Zhi-Guang Pang
and Qin Wang
[1] Arute F, Arya K, Babbush R et al. 2019 Nature 574 505
[2] Zhong H S, Wang H, Deng Y H et al. 2020 Science 370 1460
[3] Paris M and Rehacek J 2004 Quantum State Estimation (Berlin: Springer)
[4] Jones K R W 1994 Phys. Rev. A 50 3682
[5] D'Ariano G M, Macchiavello C, and Paris M G A 1994 Phys. Rev. A 50 4298
[6] Dunn T J, Walmsley I A, and Mukamel S 1995 Phys. Rev. Lett. 74 884
[7] Leonhardt U, Paul H, and D'Ariano G M 1995 Phys. Rev. A 52 4899
[8] Raymer M G, Beck M, and McAlister D F 1994 Phys. Rev. Lett. 72 1137
[9] Leonhardt U and Raymer M G 1996 Phys. Rev. Lett. 76 1985
[10] James D F V, Kwiat P G, Munro W J, and White A G 2001 Phys. Rev. A 64 052312
[11] Thew R T, Nemoto K, White A G, and Munro W J 2002 Phys. Rev. A 66 012303
[12] O'Brien J, Pryde G, White A et al. 2003 Nature 426 264
[13] Li J, Liu T J, Wang S, Jebarathinam C, and Wang Q 2019 Opt. Express 27 13559
[14] Sun K, Ye X J, Xiao Y et al. 2018 npj Quantum Inf. 4 12
[15] Xiao Y, Ye X J, Sun K, Li C F, and Guo G C 2017 Phys. Rev. Lett. 118 140404
[16] Sun K, Xu J S, Ye X J et al. 2014 Phys. Rev. Lett. 113 140402
[17] Lvovsky A I and Raymer M G 2009 Rev. Mod. Phys. 81 299
[18] Wang S, Liu C X, Li J et al. 2019 Sci. Rep. 9 3854
[19] Liu T J, Wang C Y, Li J, Wang Q 2017 Europhys. Lett. 119 14002
[20] Ou Z Y, Rhee J K, and Wang L J 1999 Phys. Rev. A 60 593
[21] Jin R B et al. 2015 Opt. Express 23 28836
[22] Huszár F and Houlsby H M T 2012 Phys. Rev. A 85 052120
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 070303
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 070303
[3] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 070303
[4] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 070303
[5] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 070303
[6] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 070303
[7] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 070303
[8] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 070303
[9] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 070303
[10] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 070303
[11] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 070303
[12] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 070303
[13] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 070303
[14] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 070303
[15] Min Xiao, Yun-Ru Cao, Xiu-Li Song. Efficient and Secure Authenticated Quantum Dialogue Protocols over Collective-Noise Channels[J]. Chin. Phys. Lett., 2017, 34(3): 070303
Viewed
Full text


Abstract