Chin. Phys. Lett.  2022, Vol. 39 Issue (7): 070302    DOI: 10.1088/0256-307X/39/7/070302
GENERAL |
Quantum Cloning of Steering
Dian Zhu1, Wei-Min Shang2, Fu-Lin Zhang1*, and Jing-Ling Chen2*
1Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
2Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071, China
Cite this article:   
Dian Zhu, Wei-Min Shang, Fu-Lin Zhang et al  2022 Chin. Phys. Lett. 39 070302
Download: PDF(446KB)   PDF(mobile)(439KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum steering in a global state allows an observer to remotely steer a subsystem into different ensembles by performing different local measurements on the other part. We show that, in general, this property cannot be perfectly cloned by any joint operation between a steered subsystem and a third system. Perfect cloning is viable if and only if the initial state is of zero discord. We also investigate the process of cloning the steered qubit of a Bell state using a universal cloning machine. Einstein–Podolsky–Rosen (EPR) steering, which is a type of quantum correlation existing in the states without a local-hidden-state model, is observed in the two copy subsystems. This contradicts the conclusion of no-cloning of quantum steering (EPR steering) [C. Y. Chiu et al., npj Quantum Inf. 2, 16020 (2016)] based on a mutual information criterion for EPR steering.
Received: 14 April 2022      Editors' Suggestion Published: 17 June 2022
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/7/070302       OR      https://cpl.iphy.ac.cn/Y2022/V39/I7/070302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dian Zhu
Wei-Min Shang
Fu-Lin Zhang
and Jing-Ling Chen
[1] Luo M X, Li H R, Lai H, and Wang X 2017 Quantum Inf. Process. 16 297
[2] Horodecki R, Horodecki P, Horodecki M, and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Modi K, Brodutch A, Cable H, Paterek T, and Vedral V 2012 Rev. Mod. Phys. 84 1655
[4] Brunner N, Cavalcanti D, Pironio S, Scarani V, and Wehner S 2014 Rev. Mod. Phys. 86 419
[5] Uola R, Costa A C, Nguyen H C, and Gühne O 2020 Rev. Mod. Phys. 92 015001
[6]Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[7] Wootters W K and Zurek W H 1982 Nature 299 802
[8] Barnum H, Caves C M, Fuchs C A, Jozsa R, and Schumacher B 1996 Phys. Rev. Lett. 76 2818
[9] Pati A K and Braunstein S L 2000 Nature 404 164
[10] Pati A K and Braunstein S L 2003 arXiv:quant-ph/0303124
[11] Modi K, Pati A K, Sen A, and Sen U 2018 Phys. Rev. Lett. 120 230501
[12] Bužek V and Hillery M 1996 Phys. Rev. A 54 1844
[13] Scarani V, Iblisdir S, Gisin N, and Acin A 2005 Rev. Mod. Phys. 77 1225
[14] Lamoureux L P, Navez P, Fiurášek J, and Cerf N J 2004 Phys. Rev. A 69 040301
[15] Patel D, Patro S, Vanarasa C, Chakrabarty I, and Pati A K 2021 Phys. Rev. A 103 022422
[16]Schrödinger E and I 1935 Mathematical Proceedings of the Cambridge Philosophical Society (Cambridge: Cambridge University Press) vol 31 p 555
[17] Wiseman H M, Jones S J, and Doherty A C 2007 Phys. Rev. Lett. 98 140402
[18] Branciard C, Cavalcanti E G, Walborn S P, Scarani V, and Wiseman H M 2012 Phys. Rev. A 85 010301
[19] Law Y Z, Thinh L P, Bancal J D, and Scarani V 2014 J. Phys. A 47 424028
[20] Peres A 1999 Found. Phys. 29 589
[21] Vértesi T and Brunner N 2014 Nat. Commun. 5 5297
[22] Moroder T, Gittsovich O, Huber M, and Gühne O 2014 Phys. Rev. Lett. 113 050404
[23] Gisin N 1991 Phys. Lett. A 154 201
[24] Chen J L, Su H Y, Xu Z P, Wu Y C, Wu C, Ye X J, Żukowski M, and Kwek L C 2015 Sci. Rep. 5 11624
[25] Cavalcanti D, Guerini L, Rabelo R, and Skrzypczyk P 2016 Phys. Rev. Lett. 117 190401
[26] Hirsch F, Quintino M T, Vértesi T, Pusey M F, and Brunner N 2016 Phys. Rev. Lett. 117 190402
[27] Zhu D, He G G, and Zhang F L 2022 Phys. Rev. A 105 062202
[28] Chiu C Y, Lambert N, Liao T L, Nori F, and Li C M 2016 npj Quantum Inf. 2 16020
[29] Li C M, Chen Y N, Lambert N, Chiu C Y, and Nori F 2015 Phys. Rev. A 92 062310
[30] Jevtic S, Pusey M, Jennings D, and Rudolph T 2014 Phys. Rev. Lett. 113 020402
[31]Verstraete F 2002 Ph.D. Dissertation (Katholieke Universiteit Leuven)
[32] Nguyen H C and Vu T 2016 Phys. Rev. A 94 012114
[33] He G G, Fan X Y, and Zhang F L 2022 Mod. Phys. Lett. A 37 2250082
[34] Jevtic S, Hall M J, Anderson M R, Zwierz M, and Wiseman H M 2015 J. Opt. Soc. Am. B 32 A40
[35] Nguyen H C and Vu T 2016 Europhys. Lett. 115 10003
[36] Zhang F L and Zhang Y Y 2019 Phys. Rev. A 99 062314
[37] Chitambar E, Streltsov A, Rana S, Bera M, Adesso G, and Lewenstein M 2016 Phys. Rev. Lett. 116 070402
[38] Matera J M, Egloff D, Killoran N, and Plenio M B 2016 Quantum Sci. Technol. 1 01LT01
[39] Streltsov A, Rana S, Bera M N, and Lewenstein M 2017 Phys. Rev. X 7 011024
[40] Cerf N J 1999 Information-Theoretic Aspects of Quantum Copying. In: Williams C P (eds) Quantum Computing and Quantum Communications. QCQC 1998. Lecture Notes in Computer Science (Berlin: Springer) vol 1509 pp 218–234
[41] Cerf N J 2000 Phys. Rev. Lett. 84 4497
[42] Shang W M, Zhang F L, and Chen J L 2021 arXiv:2103.03126 [quant-ph]
[43] Luo Y H, Zhong H S, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N L, Lu C Y et al. 2019 Phys. Rev. Lett. 123 070505
[44] Hu X M, Zhang C, Liu B H, Cai Y, Ye X J, Guo Y, Xing W B, Huang C X, Huang Y F, Li C F et al. 2020 Phys. Rev. Lett. 125 230501
[45] Liu Z H, Liang X B, Sun K, Li Q, Meng Y, Yang M, Li B, Chen J L, Xu J S, Li C F et al. 2021 Phys. Rev. Lett. 126 170505
[46] Zhang R Q, Hou Z, Li Z, Zhu H, Xiang G Y, Li C F, and Guo G C 2021 Phys. Rev. Appl. 16 024052
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 070302
[2] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 070302
[3] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 070302
[4] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 070302
[5] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 070302
[6] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 070302
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 070302
[8] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 070302
[9] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 070302
[10] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 070302
[11] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 070302
[12] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 070302
[13] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 070302
[14] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 070302
[15] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 070302
Viewed
Full text


Abstract