CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr) |
Juan-Juan Hao1†, Pei-Han Sun2†, Ming Zhang1, Xian-Xin Wu3,4*, Kai Liu2*, and Fan Yang1* |
1School of Physics, Beijing Institute of Technology, Beijing 100081, China 2Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China 3CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China 4Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
|
|
Cite this article: |
Juan-Juan Hao, Pei-Han Sun, Ming Zhang et al 2022 Chin. Phys. Lett. 39 067402 |
|
|
Abstract Recent experiments have found that in contrast to the nonsuperconducting bulk $R$NiO$_2$ ($R$ = Nd, La, and Pr), the strontium-doped $R_{1-x}$Sr$_x$NiO$_2$ thin films show superconductivity with the critical temperature $T_{\rm c}$ of 9–15 K at $x=0.2$, whose origin of superconductivity deserves further investigation. Based on first-principles calculations, we study the electronic structure, lattice dynamics, and electron–phonon coupling (EPC) of the undoped and doped $R$NiO$_2$ ($R$ = Nd, La, and Pr) at the experimental doping level. Our results show that the EPC-derived $T_{\rm c}$'s are all about 0 K in the undoped and doped $R$NiO$_2$. The electron–phonon coupling strength is too small to account for the observed superconductivity. We hence propose that the electron–phonon interaction can not be the exclusive origin of the superconductivity in $R$NiO$_2$ ($R$ = Nd, La, and Pr).
|
|
Received: 18 March 2022
Published: 29 May 2022
|
|
|
|
|
|
[1] | Bardeen J, Cooper L N, and Schrieffer J R 1957 Phys. Rev. 108 1175 |
[2] | Kamerlingh Onnes H 1911 Commun. Phys. Lab. Univ. Leiden 122 122 |
[3] | Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, and Eremets M I 2019 Nature 569 528 |
[4] | Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, and Akimitsu J 2001 Nature 410 63 |
[5] | Sigrist M and Ueda K 1991 Rev. Mod. Phys. 63 239 |
[6] | Cooper L N 1956 Phys. Rev. 104 1189 |
[7] | Harlingen V D J 1995 Rev. Mod. Phys. 67 515 |
[8] | Anderson P W 1987 Science 235 1196 |
[9] | Wu X X, Sante D D, Schwemmer T, Hanke W, Hwang H Y, Raghu S, and Thomale R 2020 Phys. Rev. B 101 060504 |
[10] | Bandyopadhyay S, Adhikary P, Das T, Dasgupta I, and Saha-Dasgupta T 2020 Phys. Rev. B 102 220502 |
[11] | Nomura Y, Hirayama M, Tadano T, Yoshimoto Y, Nakamura K, and Arita R 2019 Phys. Rev. B 100 205138 |
[12] | Botana A S and Norman M R 2020 Phys. Rev. X 10 011024 |
[13] | Zhang M, Zhang Y, Guo H, and Yang F 2021 Chin. Phys. B 30 108204 |
[14] | Zhang X M and Li B 2022 J. Solid State Chem. 306 122806 |
[15] | Jiang P, Si L, Liao Z, and Zhong Z 2019 Phys. Rev. B 100 201106 |
[16] | Lin H, Gawryluk D J, Klein Y M, Huangfu S, Pomjakushina E, von Rohr F, and Schilling A 2022 New J. Phys. 24 013022 |
[17] | Gu Y, Zhu S, Wang X H J, and Chen H 2020 Commun. Phys. 3 84 |
[18] | Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624 |
[19] | Osada M, Wang B Y, Goodge B H, Harvey S P, Lee K, Li D, and Hwang H Y 2021 Adv. Mater. 33 2104083 |
[20] | Osada M, Wang B Y, Goodge B H, Lee K, Yoon H, Sakuma K, Li D, Miura M, Kourkoutis L F, and Hwang H Y 2020 Nano Lett. 20 5735 |
[21] | Ryee S, Yoon H, Kim T J, Jeong M Y, and Han M J 2020 Phys. Rev. B 101 064513 |
[22] | Li D, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, and Hwang H Y 2020 Phys. Rev. Lett. 125 027001 |
[23] | Gu Q, Li Y, Wan S, Li H, Guo W, Yang H, and Wen H H 2020 Nat. Commun. 11 6027 |
[24] | Li Q, He C, Si J, Zhu X, Zhang Y, and Wen H H 2020 Commun. Mater. 1 16 |
[25] | Osada M, Wang B Y, Lee K, Li D, and Hwang H Y 2020 Phys. Rev. Mater. 4 121801 |
[26] | Zeng S, Tang C S, Yin X, Li C, Li M, Huang Z, and Ariando A 2020 Phys. Rev. Lett. 125 147003 |
[27] | Zhang H, Jin L, Wang S, Xi B, Shi X, Ye F, and Mei J W 2020 Phys. Rev. Res. 2 013214 |
[28] | Wang Y, Kang C J, Miao H, and Kotliar G 2020 Phys. Rev. B 102 161118 |
[29] | Kang C J and Kotliar G 2021 Phys. Rev. Lett. 126 127401 |
[30] | Lechermann F 2020 Phys. Rev. X 10 041002 |
[31] | Gu Q and Wen H 2021 Innovation 3 100202 |
[32] | Talantsev E F 2020 Results Phys. 17 103118 |
[33] | Xiang Y et al. 2021 Chin. Phys. Lett. 38 047401 |
[34] | Lechermann F 2021 Phys. Rev. Mater. 5 044803 |
[35] | Zhou X R, Feng Z X, Qin P X, Yan H, Wang X N, Nie P, and Liu Z Q 2021 Rare Met. 40 2847 |
[36] | Leonov I 2021 J. Alloys Compd. 883 160888 |
[37] | Botana A S, Bernardini F, and Cano A 2021 J. Exp. Theor. Phys. 132 618 |
[38] | LaBollita H and Botana A S 2022 Phys. Rev. B 105 085118 |
[39] | Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, and Phelan D 2020 Phys. Rev. Mater. 4 084409 |
[40] | Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli M B, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, and Baroni S 2017 J. Phys.: Condens. Matter 29 465901 |
[41] | Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 |
[42] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 |
[43] | Baroni S, de Gironcoli S, Dal C A, and Giannozzi P 2001 Rev. Mod. Phys. 73 515 |
[44] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[45] | Corso A D 2014 Comput. Mater. Sci. 95 337 |
[46] | Eliashberg G M 1960 Sov. Phys.-JETP 11 696 |
[47] | Allen P B 1972 Phys. Rev. B 6 2577 |
[48] | Lee K H, Chang K J, and Cohen M L 1995 Phys. Rev. B 52 1425 |
[49] | Richardson C F and Ashcroft N W 1997 Phys. Rev. Lett. 78 118 |
[50] | Hayward M A and Rosseinsky M J 2003 Solid State Sci. 5 839 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|