GENERAL |
|
|
|
|
State Classification via a Random-Walk-Based Quantum Neural Network |
Lu-Ji Wang1,2, Jia-Yi Lin1,2, and Shengjun Wu1,2* |
1Institute for Brain Sciences and Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China 2School of Physics, Nanjing University, Nanjing 210093, China
|
|
Cite this article: |
Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu 2022 Chin. Phys. Lett. 39 050301 |
|
|
Abstract In quantum information technology, crucial information is regularly encoded in different quantum states. To extract information, the identification of one state from the others is inevitable. However, if the states are non-orthogonal and unknown, this task will become awesomely tricky, especially when our resources are also limited. Here, we introduce the quantum stochastic neural network (QSNN), and show its capability to accomplish the binary discrimination of quantum states. After a handful of optimizing iterations, the QSNN achieves a success probability close to the theoretical optimum, no matter whether the states are pure or mixed. Other than binary discrimination, the QSNN is also applied to classify an unknown set of states into two types: entangled ones and separable ones. After training with four samples, it can classify a number of states with acceptable accuracy. Our results suggest that the QSNN has the great potential to process unknown quantum states in quantum information.
|
|
Received: 22 February 2022
Published: 26 April 2022
|
|
PACS: |
03.67.-a
|
(Quantum information)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
|
|
|
[1] | Helstrom C W 1969 J. Stat. Phys. 1 231 |
[2] | Ivanovic I D 1987 Phys. Lett. A 123 257 |
[3] | Dieks D 1988 Phys. Lett. A 126 303 |
[4] | Peres A 1988 Phys. Lett. A 128 19 |
[5] | Horodecki R, Horodecki P, and Horodecki M 1995 Phys. Lett. A 200 340 |
[6] | Horodecki M, Horodecki P, and Horodecki R 1996 Phys. Lett. A 223 1 |
[7] | Terhal B M 2000 Phys. Lett. A 271 319 |
[8] | Lewenstein M, Kraus B, Cirac J I, and Horodecki P 2000 Phys. Rev. A 62 052310 |
[9] | Bell J S 1964 Phys. Phys. Fiz. 1 195 |
[10] | Clauser J F, Horne M A, Shimony A, and Holt R A 1969 Phys. Rev. Lett. 23 880 |
[11] | Massar S and Popescu S 2005 Asymptotic Theory Of Quantum Statistical Inference (Singapore: World Scientific) p 356 |
[12] | Bruß D and Macchiavello C 1999 Phys. Lett. A 253 249 |
[13] | Paris M and Rehacek J 2004 Quantum State Estimation (New York: Springer Science & Business Media) |
[14] | Bergou J A 2010 J. Mod. Opt. 57 160 |
[15] | Barnett S M and Croke S 2009 Adv. Opt. Photon. 1 238 |
[16] | Das Sarma S, Deng D L, and Duan L M 2019 Phys. Today 72 48 |
[17] | Carleo G et al. 2019 Rev. Mod. Phys. 91 045002 |
[18] | Schuld M, Bocharov A, Svore K M, and Wiebe N 2020 Phys. Rev. A 101 032308 |
[19] | Li W and Deng D L 2022 Sci. China Phys. Mech. Astron. 65 1 |
[20] | Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, and Lloyd S 2017 Nature 549 195 |
[21] | Dunjko V and Briegel H J 2018 Rep. Prog. Phys. 81 074001 |
[22] | He Z, Li L, Zheng S, Li Y, and Situ H 2021 New J. Phys. 23 033002 |
[23] | Beer K, Bondarenko D, Farrelly T, Osborne T J, Salzmann R, Scheiermann D, and Wolf R 2020 Nat. Commun. 11 1 |
[24] | Steinbrecher G R, Olson J P, Englund D, and Carolan J 2019 npj Quantum Inf. 5 1 |
[25] | Carleo G and Troyer M 2017 Science 355 602 |
[26] | Gao X and Duan L M 2017 Nat. Commun. 8 1 |
[27] | Wan K H, Dahlsten O, Kristjánsson H, Gardner R, and Kim M 2017 npj Quantum Inf. 3 1 |
[28] | Bondarenko D and Feldmann P 2020 Phys. Rev. Lett. 124 130502 |
[29] | Chen H, Wossnig L, Severini S, Neven H, and Mohseni M 2021 Quantum Mach. Intell. 3 1 |
[30] | Patterson A, Chen H, Wossnig L, Severini S, Browne D, and Rungger I 2021 Phys. Rev. Res. 3 013063 |
[31] | Cong I, Choi S, and Lukin M D 2019 Nat. Phys. 15 1273 |
[32] | Dalla P N and Caruso F 2020 Phys. Rev. Res. 2 043011 |
[33] | Laneve A, Geraldi A, Hamiti F et al. 2021 arXiv:2107.09968 [quant-ph] |
[34] | Whitfield J D, Rodrı́guez-Rosario C A, and Aspuru-Guzik A 2010 Phys. Rev. A 81 022323 |
[35] | Schuld M, Sinayskiy I, and Petruccione F 2014 Phys. Rev. A 89 032333 |
[36] | Tang H et al. 2019 Phys. Rev. Appl. 11 024020 |
[37] | Farhi E and Gutmann S 1998 Phys. Rev. A 58 915 |
[38] | Kossakowski A 1972 Rep. Math. Phys. 3 247 |
[39] | Lindblad G 1976 Commun. Math. Phys. 48 119 |
[40] | Gorini V, Kossakowski A, and Sudarshan E C G 1976 J. Math. Phys. 17 821 |
[41] | Holevo A S 2011 Probabilistic and Statistical Aspects of Quantum Theory (New York: Springer Science & Business Media) |
[42] | Gao J, Qiao L F, Jiao Z Q et al. 2018 Phys. Rev. Lett. 120 240501 |
[43] | Ma Y C and Yung M H 2018 npj Quantum Inf. 4 1 |
[44] | Dallaire-Demers P L and Killoran N 2018 Phys. Rev. A 98 012324 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|