Chin. Phys. Lett.  2022, Vol. 39 Issue (5): 050301    DOI: 10.1088/0256-307X/39/5/050301
GENERAL |
State Classification via a Random-Walk-Based Quantum Neural Network
Lu-Ji Wang1,2, Jia-Yi Lin1,2, and Shengjun Wu1,2*
1Institute for Brain Sciences and Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
2School of Physics, Nanjing University, Nanjing 210093, China
Cite this article:   
Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu 2022 Chin. Phys. Lett. 39 050301
Download: PDF(1181KB)   PDF(mobile)(1659KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In quantum information technology, crucial information is regularly encoded in different quantum states. To extract information, the identification of one state from the others is inevitable. However, if the states are non-orthogonal and unknown, this task will become awesomely tricky, especially when our resources are also limited. Here, we introduce the quantum stochastic neural network (QSNN), and show its capability to accomplish the binary discrimination of quantum states. After a handful of optimizing iterations, the QSNN achieves a success probability close to the theoretical optimum, no matter whether the states are pure or mixed. Other than binary discrimination, the QSNN is also applied to classify an unknown set of states into two types: entangled ones and separable ones. After training with four samples, it can classify a number of states with acceptable accuracy. Our results suggest that the QSNN has the great potential to process unknown quantum states in quantum information.
Received: 22 February 2022      Published: 26 April 2022
PACS:  03.67.-a (Quantum information)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  42.50.Dv (Quantum state engineering and measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/5/050301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I5/050301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lu-Ji Wang
Jia-Yi Lin
and Shengjun Wu
[1] Helstrom C W 1969 J. Stat. Phys. 1 231
[2] Ivanovic I D 1987 Phys. Lett. A 123 257
[3] Dieks D 1988 Phys. Lett. A 126 303
[4] Peres A 1988 Phys. Lett. A 128 19
[5] Horodecki R, Horodecki P, and Horodecki M 1995 Phys. Lett. A 200 340
[6] Horodecki M, Horodecki P, and Horodecki R 1996 Phys. Lett. A 223 1
[7] Terhal B M 2000 Phys. Lett. A 271 319
[8] Lewenstein M, Kraus B, Cirac J I, and Horodecki P 2000 Phys. Rev. A 62 052310
[9] Bell J S 1964 Phys. Phys. Fiz. 1 195
[10] Clauser J F, Horne M A, Shimony A, and Holt R A 1969 Phys. Rev. Lett. 23 880
[11]Massar S and Popescu S 2005 Asymptotic Theory Of Quantum Statistical Inference (Singapore: World Scientific) p 356
[12] Bruß D and Macchiavello C 1999 Phys. Lett. A 253 249
[13]Paris M and Rehacek J 2004 Quantum State Estimation (New York: Springer Science & Business Media)
[14] Bergou J A 2010 J. Mod. Opt. 57 160
[15] Barnett S M and Croke S 2009 Adv. Opt. Photon. 1 238
[16] Das Sarma S, Deng D L, and Duan L M 2019 Phys. Today 72 48
[17] Carleo G et al. 2019 Rev. Mod. Phys. 91 045002
[18] Schuld M, Bocharov A, Svore K M, and Wiebe N 2020 Phys. Rev. A 101 032308
[19] Li W and Deng D L 2022 Sci. China Phys. Mech. Astron. 65 1
[20] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, and Lloyd S 2017 Nature 549 195
[21] Dunjko V and Briegel H J 2018 Rep. Prog. Phys. 81 074001
[22] He Z, Li L, Zheng S, Li Y, and Situ H 2021 New J. Phys. 23 033002
[23] Beer K, Bondarenko D, Farrelly T, Osborne T J, Salzmann R, Scheiermann D, and Wolf R 2020 Nat. Commun. 11 1
[24] Steinbrecher G R, Olson J P, Englund D, and Carolan J 2019 npj Quantum Inf. 5 1
[25] Carleo G and Troyer M 2017 Science 355 602
[26] Gao X and Duan L M 2017 Nat. Commun. 8 1
[27] Wan K H, Dahlsten O, Kristjánsson H, Gardner R, and Kim M 2017 npj Quantum Inf. 3 1
[28] Bondarenko D and Feldmann P 2020 Phys. Rev. Lett. 124 130502
[29] Chen H, Wossnig L, Severini S, Neven H, and Mohseni M 2021 Quantum Mach. Intell. 3 1
[30] Patterson A, Chen H, Wossnig L, Severini S, Browne D, and Rungger I 2021 Phys. Rev. Res. 3 013063
[31] Cong I, Choi S, and Lukin M D 2019 Nat. Phys. 15 1273
[32] Dalla P N and Caruso F 2020 Phys. Rev. Res. 2 043011
[33] Laneve A, Geraldi A, Hamiti F et al. 2021 arXiv:2107.09968 [quant-ph]
[34] Whitfield J D, Rodrı́guez-Rosario C A, and Aspuru-Guzik A 2010 Phys. Rev. A 81 022323
[35] Schuld M, Sinayskiy I, and Petruccione F 2014 Phys. Rev. A 89 032333
[36] Tang H et al. 2019 Phys. Rev. Appl. 11 024020
[37] Farhi E and Gutmann S 1998 Phys. Rev. A 58 915
[38] Kossakowski A 1972 Rep. Math. Phys. 3 247
[39] Lindblad G 1976 Commun. Math. Phys. 48 119
[40] Gorini V, Kossakowski A, and Sudarshan E C G 1976 J. Math. Phys. 17 821
[41]Holevo A S 2011 Probabilistic and Statistical Aspects of Quantum Theory (New York: Springer Science & Business Media)
[42] Gao J, Qiao L F, Jiao Z Q et al. 2018 Phys. Rev. Lett. 120 240501
[43] Ma Y C and Yung M H 2018 npj Quantum Inf. 4 1
[44] Dallaire-Demers P L and Killoran N 2018 Phys. Rev. A 98 012324
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 050301
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 050301
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 050301
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 050301
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 050301
[6] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 050301
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 050301
[8] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 050301
[9] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 050301
[10] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 050301
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 050301
[12] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 050301
[13] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 050301
[14] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 050301
[15] Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang. Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States[J]. Chin. Phys. Lett., 2020, 37(7): 050301
Viewed
Full text


Abstract