Chin. Phys. Lett.  2022, Vol. 39 Issue (5): 050302    DOI: 10.1088/0256-307X/39/5/050302
GENERAL |
Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits
Qi Zhang1 and Guang-Ming Zhang1,2*
1State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
2Frontier Science Center for Quantum Information, Beijing 100084, China
Cite this article:   
Qi Zhang and Guang-Ming Zhang 2022 Chin. Phys. Lett. 39 050302
Download: PDF(597KB)   PDF(mobile)(712KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A random quantum circuit is a minimally structured model to study entanglement dynamics of many-body quantum systems. We consider a one-dimensional quantum circuit with noisy Haar-random unitary gates using density matrix operator and tensor contraction methods. It is shown that the entanglement evolution of the random quantum circuits is properly characterized by the logarithmic entanglement negativity. By performing exact numerical calculations, we find that, as the physical error rate is decreased below a critical value $p_{\rm c} \approx 0.056$, the logarithmic entanglement negativity changes from the area law to the volume law, giving rise to an entanglement transition. The critical exponent of the correlation length can be determined from the finite-size scaling analysis, revealing the universal dynamic property of the noisy intermediate-scale quantum devices.
Received: 04 March 2022      Editors' Suggestion Published: 26 April 2022
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/5/050302       OR      https://cpl.iphy.ac.cn/Y2022/V39/I5/050302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi Zhang and Guang-Ming Zhang
[1] Arute F, Arya K, Babbush R et al. 2019 Nature 574 505
[2] Wu Y, Bao W S, Cao S et al. 2021 Phys. Rev. Lett. 127 180501
[3] Zhou Y, Stoudenmire E M, and Waintal X 2020 Phys. Rev. X 10 041038
[4] Nahum A, Vijay S, and Haah J 2018 Phys. Rev. X 8 021014
[5] Mi X, Roushan P, Quintana C et al. 2021 Science 374 1479
[6] Xu S and Swingle B 2020 Nat. Phys. 16 199
[7] Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis J M, and Neven H 2018 Nat. Phys. 14 595
[8] Neill C, Roushan P, Kechedzhi K, Boixo S, Isakov S V, Smelyanskiy V, Megrant A, Chiaro B, Dunsworth A, and Arya K 2018 Science 360 195
[9] Noh K, Jiang L, and Fefferman B 2020 Quantum 4 318
[10] Cheng S, Cao C, Zhang C, Liu Y, Hou S Y, Xu P, and Zeng B 2021 Phys. Rev. Res. 3 023005
[11] Nahum A, Ruhman J, Vijay S, and Haah J 2017 Phys. Rev. X 7 031016
[12] Napp J, La P R L, Dalzell A M, Brandao F G S L, and Harrow A W 2019 arXiv:2001.00021 [quant-ph]
[13] Markov I L and Shi Y 2008 SIAM J. Comput. 38 963
[14] Li Y, Chen X, and Fisher M P A 2018 Phys. Rev. B 98 205136
[15] Skinner B, Ruhman J, and Nahum A 2019 Phys. Rev. X 9 031009
[16] Bao Y, Choi S, and Altman E 2020 Phys. Rev. B 101 104301
[17] Zabalo A, Gullans M J, Wilson J H, Gopalakrishnan S, Huse D A, and Pixley J H 2020 Phys. Rev. B 101 060301
[18] Choi S, Bao Y, Qi X L, and Altman E 2020 Phys. Rev. Lett. 125 030505
[19] Lunt O, Richter J, and Pal A 2021 arXiv:2112.06682 [quant-ph]
[20] Sang S and Hsieh T H 2021 Phys. Rev. Res. 3 023200
[21] Lavasani A, Alavirad Y, and Barkeshli M 2021 Nat. Phys. 17 342
[22] Li Y and Fisher M P A 2021 Phys. Rev. B 103 104306
[23] Adami C and Cerf N J 1997 Phys. Rev. A 56 3470
[24] Groisman B, Popescu S, and Winter A 2005 Phys. Rev. A 72 032317
[25] Žnidarič M, Prosen T, and Pižorn I 2008 Phys. Rev. A 78 022103
[26] Shapourian H, Liu S, Kudler-Flam J, and Vishwanath A 2021 PRX Quantum 2 030347
[27] Zanardi P 2001 Phys. Rev. A 63 040304
[28] Prosen T and Pižorn I 2007 Phys. Rev. A 76 032316
[29] Alba V, Dubail J, and Medenjak M 2019 Phys. Rev. Lett. 122 250603
[30] Peres A 1996 Phys. Rev. Lett. 77 1413
[31] Horodecki M, Horodecki P, and Horodecki R 1996 Phys. Lett. A 223 1
[32] Życzkowski K, Horodecki P, Sanpera A, and Lewenstein M 1998 Phys. Rev. A 58 883
[33] Eisert J and Plenio M B 1999 J. Mod. Opt. 46 145
[34] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[35] Plenio M B 2005 Phys. Rev. Lett. 95 090503
[36] Ruggiero P, Alba V, and Calabrese P 2016 Phys. Rev. B 94 195121
[37] Shapourian H, Ruggiero P, Ryu S, and Calabrese P 2019 SciPost Phys. 7 37
[38] Kudler-Flam J, Narovlansky V, and Ryu S 2021 arXiv:2109.02649 [hep-th]
[39] Page D N 1993 Phys. Rev. Lett. 71 1291
[40] Choi M D 1975 Linear Alg. its Appl. 10 285
[41] Vidal G 2003 Phys. Rev. Lett. 91 147902
[42] Verstraete F, García-Ripoll J J, and Cirac J I 2004 Phys. Rev. Lett. 93 207204
[43] Hastings M B 2006 Phys. Rev. B 73 085115
[44] Verstraete F, Murg V, and Cirac J I 2008 Adv. Phys. 57 143
[45] Zwolak M and Vidal G 2004 Phys. Rev. Lett. 93 207205
[46] Pirvu B, Murg V, Cirac J I, and Verstraete F 2010 New J. Phys. 12 025012
[47] Elben A, Kueng R, Huang H Y, van Bijnen R, Kokail C, Dalmonte M, Calabrese P, Kraus B, Preskill J, Zoller P, and Vermersch B 2020 Phys. Rev. Lett. 125 200501
[48] Wang K, Song Z, Zhao X, Wang Z, and Wang X 2020 arXiv:2012.14311 [quant-ph]
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 050302
[2] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 050302
[3] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 050302
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 050302
[5] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 050302
[6] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 050302
[7] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 050302
[8] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 050302
[9] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 050302
[10] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 050302
[11] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 050302
[12] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 050302
[13] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 050302
[14] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 050302
[15] Zhen-Tao Liang, Qing-Xian Lv, Shan-Chao Zhang, Wei-Tao Wu, Yan-Xiong Du, Hui Yan, Shi-Liang Zhu. Coherent Coupling between Microwave and Optical Fields via Cold Atoms[J]. Chin. Phys. Lett., 2019, 36(8): 050302
Viewed
Full text


Abstract