Chin. Phys. Lett.  2022, Vol. 39 Issue (4): 044202    DOI: 10.1088/0256-307X/39/4/044202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity
Qin Zhou1, Yu Zhong1, Houria Triki2, Yunzhou Sun1*, Siliu Xu3, Wenjun Liu4,5*, and Anjan Biswas6,7
1Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
2Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, P. O. Box 12, 23000 Annaba, Algeria
3School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning 437100, China
4State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
5Beijing University of Posts and Telecommunications Research Institute, Shenzhen 518057, China
6Department of Physics, Chemistry and Mathematics, Alabama A&M University, Normal, AL 35762-4900, USA
7Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Cite this article:   
Qin Zhou, Yu Zhong, Houria Triki et al  2022 Chin. Phys. Lett. 39 044202
Download: PDF(446KB)   PDF(mobile)(566KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This work focuses on chirped solitons in a higher-order nonlinear Schrödinger equation, including cubic-quintic-septic nonlinearity, weak nonlocal nonlinearity, self-frequency shift, and self-steepening effect. For the first time, analytical bright and kink solitons, as well as their corresponding chirping, are obtained. The influence of septic nonlinearity and weak nonlocality on the dynamical behaviors of those nonlinearly chirped solitons is thoroughly addressed. The findings of the study give an experimental basis for nonlinear-managed solitons in optical fibers.
Received: 24 February 2022      Published: 29 March 2022
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/4/044202       OR      https://cpl.iphy.ac.cn/Y2022/V39/I4/044202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qin Zhou
Yu Zhong
Houria Triki
Yunzhou Sun
Siliu Xu
Wenjun Liu
and Anjan Biswas
[1]Agrawal G P 2001 Nonlinear Fiber Optics (Boston: Academic)
[2] Wang L L and Liu W J 2020 Chin. Phys. B 29 070502
[3] Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201
[4] Li J, Chen Q, and Li B 2021 Commun. Theor. Phys. 73 045006
[5] Qi Z, Zhang Z, and Li B 2021 Chin. Phys. Lett. 38 060501
[6] Cao Q and Dai C Q 2021 Chin. Phys. Lett. 38 090501
[7] Zhou Q, Wang T, Biswas A, and Liu W 2022 Nonlinear Dyn. 107 1215
[8] Zhou Q 2022 Chin. Phys. Lett. 39 010501
[9] Mou D S, Fang J J, Dai C Q, and Wang Y Y 2021 Optik 227 165396
[10] Zhao J, Luan Z, Zhang P, Dai C, Biswas A, Liu W, and Kudryashov N A 2020 Optik 220 165189
[11] Zhang P, Hu C, Zhou Q, Biswas A, and Liu W J 2020 Nonlinear Dyn. 101 1215
[12] Chen J, Luan Z, Zhou Q, Alzahrani A K, Biswas A, and Liu W J 2020 Nonlinear Dyn. 100 2817
[13] Krolikowski W, Bang O, Nikolov N I, Neshev D, Wyller J, Rasmussen J J, and Edmundson D 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S288
[14] Krolikowski W, Bang O, Rasmussen J, and Wyller J 2001 Phys. Rev. E 64 16612
[15] Wyller J, Krolikowski W, Bang O, and Rasmussen J 2002 Phys. Rev. E 66 066615
[16] Buccoliero D, Desyatnikov A, Krolikowski W, and Kivshar Y 2007 Phys. Rev. Lett. 98 53901
[17] Rasmussen P, Bennet F, Neshev D, Sukhorukov A, Rosberg C, Krolikowski W, Bang O, and Kivshar Y 2009 Opt. Lett. 34 295
[18] Krolikowski W, Bang O, and Wyller J 2004 Phys. Rev. E 70 036617
[19] Skupin S, Bang O, Edmundson D, and Krolikowski W 2006 Phys. Rev. E 73 66603
[20] Buccoliero D, Desyatnikov A, Krolikowski W, and Kivshar Y 2008 Opt. Lett. 33 198
[21] Briedis D, Petersen D, Edmundson D, Krolikowski W, and Bang O 2005 Opt. Express 13 435
[22] Kartashov Y, Vysloukh V, and Torner L 2007 Opt. Express 15 9378
[23] Krolikowski W and Bang O 2000 Phys. Rev. E 63 016610
[24] Zhong W P, Yang Z, Belić M, and Zhong W 2021 Phys. Lett. A 395 127228
[25] Shou Q, Weng Z, Guan S, Han H, Huang H, Guo Q, and Hu W 2021 Opt. Lett. 46 2807
[26] Snyder A W and Mitchell D J 1997 Science 276 1538
[27] Zhou Q, Yao D, Liu X, Chen F, Ding S, Zhang Y, and Chen F 2013 Opt. Laser Technol. 51 32
[28] Dreischuh A, Neshev D, Petersen D, Bang O, and Krolikowski W 2006 Phys. Rev. Lett. 96 43901
[29] Kong Q, Wang Q, Bang O, and Krolikowski W 2010 Phys. Rev. A 82 013826
[30] Tsoy E N 2010 Phys. Rev. A 82 063829
[31] Triki H and Kruglov V I 2021 Chaos, Solitons & Fractals 153 111496
[32] Reyna A S, Jorge K C, and de Araújo C B 2014 Phys. Rev. A 90 063835
[33] Reyna A S and de Araújo C B 2014 Opt. Express 22 22456
[34] Chen Y F, Beckwitt K, Wise F W, Aitken B G, Sanghera J S, and Aggarwal I D 2006 J. Opt. Soc. Am. B 23 347
[35] Saini A, Vyas V M, Pandey S N, Soloman R T, and Panigrahi P K 2009 arXiv:0911.2788 [nlin.PS]
[36] Zhou Q, Yao D, Ding S, Zhang Y, Chen F, Chen F, and Liu X 2013 Optik 124 5683
[37] Daoui D, Messouber A, Triki H, Zhou Q, Biswas A, and Liu W 2021 Chaos, Solitons & Fractals 146 110873
[38] Meradji S, Triki H, Zhou Q, Biswas A, Ekici M, and Liu W 2020 Chaos, Solitons & Fractals 141 110441
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 044202
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 044202
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 044202
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 044202
[5] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 044202
[6] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 044202
[7] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 044202
[8] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 044202
[9] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 044202
[10] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 044202
[11] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 044202
[12] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 044202
[13] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 044202
[14] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 044202
[15] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 044202
Viewed
Full text


Abstract