Chin. Phys. Lett.  2022, Vol. 39 Issue (4): 044201    DOI: 10.1088/0256-307X/39/4/044201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link
Xiang Zhang1,2,3, Xue Deng1,3, Qi Zang1,2,3, Dongdong Jiao1,3, Jing Gao1,2,3, Dan Wang1,2,3, Qian Zhou1,2,3, Jie Liu1,3, Guanjun Xu1,3, Ruifang Dong1,2,3*, Tao Liu1,2,3*, and Shougang Zhang1,2,3
1National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China
2University of Chinese Academy of Sciences, Beijing 100039, China
3Key Laboratory of Time and Frequency Standards, Chinese Academy of Sciences, Xi'an 710600, China
Cite this article:   
Xiang Zhang, Xue Deng, Qi Zang et al  2022 Chin. Phys. Lett. 39 044201
Download: PDF(1193KB)   PDF(mobile)(1296KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate the coherent transfer of an ultrastable optical frequency reference over a 490 km noisy field fiber link. The fiber-induced phase noise power spectrum density per-unit-length at 1 Hz offset frequency can reach up to 510 rad$^2$$\cdot$Hz$^{-1}$$\cdot$km$^{-1}$, which is much higher than the fiber noise observed in previous reports. This extreme level of phase noise is mainly due to the fiber link laying underground along the highway. Appropriate phase-locked loop parameters are chosen to complete the active compensation of fiber noise by measuring the intensity fluctuation of additional phase noise and designing a homemade digital frequency division phase discriminator with a large phase detection range of $2^{12} \pi$ rad. Finally, a noise suppression intensity of approximately 40 dB at 1 Hz is obtained, with fractional frequency instability of $1.1\times10^{-14}$ at 1 s averaging time, and $3.7\times10^{-19}$ at 10000 s. The transfer system will be used for remote atomic clock comparisons and optical frequency distribution over a long-distance communication network established in China.
Received: 18 December 2021      Published: 15 March 2022
PACS:  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  06.30.Ft (Time and frequency)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/4/044201       OR      https://cpl.iphy.ac.cn/Y2022/V39/I4/044201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiang Zhang
Xue Deng
Qi Zang
Dongdong Jiao
Jing Gao
Dan Wang
Qian Zhou
Jie Liu
Guanjun Xu
Ruifang Dong
Tao Liu
and Shougang Zhang
[1] Ludlow A D, Boyd M M, Ye J, Peik E, and Schmidt P O 2015 Rev. Mod. Phys. 87 637
[2] Marti G E, Hutson R B, Goban A, Campbell S L, Poli N, and Ye J 2018 Phys. Rev. Lett. 120 103201
[3] Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A et al. 2017 Nat. Photon. 11 48
[4] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, and Ludlow A D 2018 Nature 564 87
[5] Clivati C, Ambrosini R, Artz T, Bertarini A, Bortolotti C, Frittelli M, Levi F, Mura A, Maccaferri G, Nanni M et al. 2017 Sci. Rep. 7 40992
[6] Wang B, Zhu X, Gao C, Bai Y, Dong J W, and Wang L J 2015 Sci. Rep. 5 13851
[7] Lisdat C, Grosche G, Quintin N, Shi C, Raupach S M, Grebing C, Nicolodi D, Stefani F, Al-Masoudi A, Dörscher S et al. 2016 Nat. Commun. 7 12443
[8] Hu L, Poli N, Salvi L, and Tino G M 2017 Phys. Rev. Lett. 119 263601
[9] Grotti J, Koller S, Vogt S, Häfner S, Sterr U, Lisdat C, Denker H, Voigt C et al. 2018 Nat. Phys. 14 437
[10] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, and Ye J 2016 Phys. Rev. D 94 124043
[11] Roberts B M, Delva P, Al-Masoudi A, Amy-Klein A, Bærentsen C, Baynham C F A, Benkler E, Bilicki S, Bize S, Bowden W, Calvert J, Cambier V, Cantin E, Curtis E A, Dörscher S, Favier M, Frank F, Gill P, Godun R M, Grosche G, Guo C, Hees A, Hill I R, Hobson R, Huntemann N, Kronjäger J, Koke S, Kuhl A, Lange R, Legero T, Lipphardt B, Lisdat C, Lodewyck J, Lopez O, Margolis H S, Álvarez-Martínez H, Meynadier F, Ozimek F, Peik E, Pottie P E, Quintin N, Sanner C, Sarlo L D, Schioppo M, Schwarz R, Silva A, Sterr U, Tamm C, Targat R L, Tuckey P, Vallet G, Waterholter T, Xu D, and Wolf P 2020 New J. Phys. 22 093010
[12] Williams P A, Swann W C, and Newbury N R 2008 J. Opt. Soc. Am. B 25 1284
[13] Lopez O, Haboucha A, Chanteau B, Chardonnet C, Amy-Klein A, and Santarelli G 2012 Opt. Express 20 23518
[14] Droste S, Ozimek F, Udem T W, Predehl K, Hänsch T, Schnatz H, Grosche G, and Holzwarth R 2013 Phys. Rev. Lett. 111 110801
[15] Calonico D, Bertacco E K, Calosso C E, Clivati C, Costanzo G A, Frittelli M, Godone A, Mura A, Poli N, Sutyrin D V et al. 2014 Appl. Phys. B 117 979
[16] Chiodo N, Quintin N, Stefani F, Wiotte F, Camisard E, Chardonnet C, Santarelli G, Amy-Klein A, Pottie P E, and Lopez O 2015 Opt. Express 23 33927
[17] Deng X, Liu J, Jiao D D, Gao J, Zang Q, Xu G J, Dong R F, Liu T, and Zhang S G 2016 Chin. Phys. Lett. 33 114202
[18] Wu L, Jiang Y, Ma C, Yu H, Bi Z, and Ma L 2016 Opt. Lett. 41 4368
[19] Feng Z, Zhang X, Wu R, Sun Y, Wei F, Yang F, Gui Y, and Cai H 2019 Photon. Res. 13 1
[20] Hu L, Tian X, Wu G, and Chen J 2020 Opt. Lett. 45 4308
[21] Husmann D, Bernier L G, Bertrand M, Calonico D, Chaloulos K, Clausen G, Clivati C, Faist J, Heiri E, Hollenstein U, Johnson A, Mauchle F, Meir Z, Merkt F, Mura A, Scalari G, Scheidegger S, Schmutz H, Sinhal M, Willitsch S, and Morel J 2021 Opt. Express 29 24592
[22] Ma L S, Jungner P, Ye J, and Hall J L 1994 Opt. Lett. 19 1777
[23] Clivati C, Tampellini A, Mura A, Levi F, Marra G, Galea P, Xuereb A, and Calonico D 2018 Optica 5 893
[24] Cantin E, Tønnes M, Targat R L, Amy-Klein A, Lopez O, and Pottie P E 2021 New J. Phys. 23 053027
[25] Gozzard D R, Schediwy S W, Wallace B, Gamatham R, and Grainge K 2017 Opt. Lett. 42 2197
[26] Zhang X, Hu L, Deng X, Zang Q, Liu J, Wang D, Liu T, Dong R, and Zhang S 2021 arXiv:2106.12897 [physics.ins-det]
[27]Walls C F M L F, Clements A, and Vanek M 1990 National Institute of Standards and Technology (NIST) Technical Note 1337
[28] Raupach S M, Koczwara A, and Grosche G 2014 Opt. Express 22 26537
[29] Lopez O, Haboucha A, Kéfélian F, Jiang H, Chanteau B, Roncin V, Chardonnet C, Amy-Klein A, and Santarelli G 2010 Opt. Express 18 16849
[30] Akatsuka T, Goh T, Imai H, Oguri K, Ishizawa A, Ushijima I, Ohmae N, Takamoto M, Katori H, Hashimoto T et al. 2020 Opt. Express 28 9186
[31] Fujieda M, Kumagai M, and Nagano S 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 168
[32] Jiao D, Gao J, Deng X, Xu G, Liu J, Liu T, Dong R, and Zhang S 2020 Opt. Commun. 463 125460
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 044201
[2] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 044201
[3] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 044201
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 044201
[5] Chao Wang, Xue-Feng Liu, Wen-Kai Yu, Xu-Ri Yao, Fu Zheng, Qian Dong, Ruo-Ming Lan, Zhi-Bin Sun, Guang-Jie Zhai, Qing Zhao. Computational Spectral Imaging Based on Compressive Sensing[J]. Chin. Phys. Lett., 2017, 34(10): 044201
[6] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 044201
[7] Wei-Xin Liu, Ming-Zhe Sun. Anomalous Variation of Beat Frequency in a Dual Frequency He–Ne Laser[J]. Chin. Phys. Lett., 2016, 33(02): 044201
[8] YAN Lu-Lu, ZHANG Yan-Yan, ZHANG Long, FAN Song-Tao, ZHANG Xiao-Fei, GUO Wen-Ge, ZHANG Shou-Gang, JIANG Hai-Feng. Attosecond-Resolution Er:Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2015, 32(10): 044201
[9] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 044201
[10] LI Ye, LIN Yi-Ge, WANG Qiang, WANG Shao-Kai, ZHAO Yang, MENG Fei, LIN Bai-Ke, CAO Jian-Ping, LI Tian-Chu, FANG Zhan-Jun, ZANG Er-Jun. A Hertz-Linewidth Ultrastable Diode Laser System for Clock Transition Detection of Strontium Atoms[J]. Chin. Phys. Lett., 2014, 31(2): 044201
[11] TAN Yi-Dong, ZHANG Song, REN Zhou, ZHANG Yong-Qin, ZHANG Shu-Lian. Real-Time Liquid Evaporation Rate Measurement Based on a Microchip Laser Feedback Interferometer[J]. Chin. Phys. Lett., 2013, 30(12): 044201
[12] HOU Lei, HAN Hai-Nian, ZHANG Jin-Wei, LI De-Hua, WEI Zhi-Yi. A Wide Spaced Femtosecond Ti:Sapphire Frequency Comb at 15 GHz by a Fabry–Pérot Filter Cavity[J]. Chin. Phys. Lett., 2013, 30(10): 044201
[13] WU Yun, TAN Yi-Dong, ZHANG Shu-Lian, LI Yan. Influence of Feedback Level on Laser Polarization in Polarized Optical Feedback[J]. Chin. Phys. Lett., 2013, 30(8): 044201
[14] CHEN Wen-Xue, ZHANG Shu-Lian, LONG Xing-Wu. Multi-Wavelength Conversion Based on Single Wavelength Results in Phase Retardation Measurement[J]. Chin. Phys. Lett., 2013, 30(3): 044201
[15] WU Yun, TAN Yi-Dong. Birefringence Optical Feedback with a Folded Cavity in HeNe Laser[J]. Chin. Phys. Lett., 2013, 30(1): 044201
Viewed
Full text


Abstract