CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Dynamic Cantilever Magnetometry of Paramagnetism with Slow Relaxation |
Zhiyu Ma1,2, Kun Fan3, Qi Li1,2, Feng Xu1, Lvkuan Zou1*, Ning Wang1, Li-Min Zheng3*, and Fei Xue1* |
1Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China 2Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China 3State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
|
|
Cite this article: |
Zhiyu Ma, Kun Fan, Qi Li et al 2022 Chin. Phys. Lett. 39 037501 |
|
|
Abstract Dynamic cantilever magnetometry is a sensitive method that has been widely used in studying magnetic anisotropy in ferromagnetic materials and Fermi surface in quantum materials. We study a cobalt-iridium metal-metalloligand coordination polymer using dynamic cantilever magnetometry. The experimental data of dynamic cantilever magnetometry are well explained using the proposed model for Langevin paramagnetism with slow relaxation. Based on the proposed model, we calculate the magnetization and magnetic susceptibility of paramagnetic materials from frequency shifts of a cantilever. The extracted magnetization and magnetic susceptibility are consistent with those obtained from conventional DC and AC magnetometry. The proposed slow relaxation picture is probably a general model for explaining dynamic cantilever magnetometry data of paramagnetic materials, including previously observed dynamic cantilever magnetometry data of paramagnetic metals [Gysin et al. 2011 Nanotechnology 22 285715].
|
|
Received: 13 December 2021
Published: 01 March 2022
|
|
PACS: |
75.30.Cr
|
(Saturation moments and magnetic susceptibilities)
|
|
75.20.-g
|
(Diamagnetism, paramagnetism, and superparamagnetism)
|
|
72.25.Rb
|
(Spin relaxation and scattering)
|
|
07.55.Jg
|
(Magnetometers for susceptibility, magnetic moment, and magnetization measurements)
|
|
|
|
|
[1] | Gysin U, Rast S, Aste A, Speliotis T, Werle C, and Meyer E 2011 Nanotechnology 22 285715 |
[2] | Stipe B C, Mamin H J, Stowe T D, Kenny T W, and Rugar D 2001 Phys. Rev. Lett. 86 2874 |
[3] | Kamra A, Schreier M, Huebl H, and Goennenwein S T B 2014 Phys. Rev. B 89 184406 |
[4] | Yu Y, Xu F, Guo S S, Wang N, Zou L K, Wang B M, Li R W, and Xue F 2020 Appl. Phys. Lett. 116 193102 |
[5] | Wang H X, Song J H, Wang W P, Chen Y S, Shen X, Yao Y, Li J J, Sun J R, and Yu R C 2021 Chin. Phys. Lett. 38 087502 |
[6] | Na S H, Wu W, and Luo J L 2020 Chin. Phys. Lett. 37 087301 |
[7] | Xu F, Guo S S, Yu Y, Wang N, Zou L K, Wang B M, Li R W, and Xue F 2019 Phys. Rev. Appl. 11 054007 |
[8] | Overweg H C, den Haan A M J, Eerkens H J, Alkemade P F A, Rooij A L L, Spreeuw R J C, Bossoni L, and Oosterkamp T H 2015 Appl. Phys. Lett. 107 072402 |
[9] | Choi H, Kim Y W, Lee S G, Choi M S, Kim M S, and Choi J H 2017 Phys. Rev. B 95 064505 |
[10] | Chen L, Yu F, Xiang Z, Asaba T, Tinsman C, Lawson B, Sass P M, Wu W, Kang B L, Chen X, and Li L 2018 Phys. Rev. Appl. 9 024005 |
[11] | Li G, Xiang Z, Yu F, Asaba T, Lawson B, Cai P, Tinsman C, Berkley A, Wolgast S, Eo Y S, Kim D J, Kurdak C, Allen J W, Sun K, Chen X H, Wang Y Y, Fisk Z, and Li L 2014 Science 346 1208 |
[12] | Moll P J W, Potter A C, Nair N L, Ramshaw B J, Modic K A, Riggs S, Zeng B, Ghimire N J, Bauer E D, Kealhofer R, Ronning F, and Analytis J G 2016 Nat. Commun. 7 12492 |
[13] | Modic K A, Bachmann M D, Ramshaw B J, Arnold F, Shirer K R, Estry A, Betts J B, Ghimire N J, Bauer E D, Schmidt M, Baenitz M, Svanidze E, McDonald R D, Shekhter A, and Moll P J W 2018 Nat. Commun. 9 3975 |
[14] | Semeghini G, Levine H, Keesling A, Ebadi S, Wang T T, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Samajdar R, Omran A, Sachdev S, Vishwanath A, Greiner M, Vuletić V, and Lukin M D 2021 Science 374 1242 |
[15] | Wei Y, Ma X, Feng Z, Zhang Y, Zhang L, Yang H, Qi Y, Meng Z Y, Wang Y C, Shi Y, and Li S 2021 Chin. Phys. Lett. 38 097501 |
[16] | Jia Y T, Gong C S, Liu Y X, Zhao J F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M, and Jin C Q 2020 Chin. Phys. Lett. 37 097404 |
[17] | Leahy I A, Pocs C A, Siegfried P E, Graf D, Do S H, Choi K Y, Normand B, and Lee M 2017 Phys. Rev. Lett. 118 187203 |
[18] | Yang C, Wang Z C, and Su G 2020 Chin. Phys. Lett. 37 087201 |
[19] | Krivokapic I, Zerara M, Daku M L, Vargas A, Enachescu C, Ambrus C, Tregenna-Piggott P, Amstutz N, Krausz E, and Hauser A 2007 Coord. Chem. Rev. 251 364 |
[20] | Shao D, Shi L, Yin L, Wang B L, Wang Z X, Zhang Y Q, and Wang X Y 2018 Chem. Sci. 9 7986 |
[21] | Kurmoo M 2009 Chem. Soc. Rev. 38 1353 |
[22] | Xie Z, Ma L, DeKrafft K E, Jin A, and Lin W 2010 J. Am. Chem. Soc. 132 922 |
[23] | Greedan J E 2001 J. Mater. Chem. 11 37 |
[24] | Kostakis G E, Perlepesb S P, Blatov V A, Proserpio D M, and Powell A K 2012 Coord. Chem. Rev. 256 1246 |
[25] | Perfetti M 2017 Coord. Chem. Rev. 348 171 |
[26] | Fan K, Xu F, Kurmoo M, Huang X D, Liao C H, Bao S S, Xue F, and Zheng L M 2020 Inorg. Chem. 59 8935 |
[27] | Weber D P, Rüffer D, Buchter A, Xue F, Russo-Averchi E, Huber R, Berberich P, Arbiol J, Morral A F I, Grundler D, and Poggio M 2012 Nano Lett. 12 6139 |
[28] | Gross B, Philipp S, Josten E, Leliaert J, Wetterskog E, Bergström L, and Poggio M 2021 Phys. Rev. B 103 014402 |
[29] | Shamsudhin N, Tao Y, Sort J, Jang B, Degen C L, Nelson B J, and Pané S 2016 Small 12 6363 |
[30] | Philipp S, Gross B, Reginka M, Merkel M, Claus M M, Sulliger M, Ehresmann A, and Poggio M 2021 Appl. Phys. Lett. 119 222406 |
[31] | Binder K and Young A P 1986 Rev. Mod. Phys. 58 801 |
[32] | Gil-Santos E, Ramos D, Martínez J, Fernández-Regúlez M, García R, Paulo S, Calleja M, and Tamayo J 2010 Nat. Nanotechnol. 5 641 |
[33] | Nagataki A, Takei K, Arie T, and Akita S 2015 Appl. Phys. Express 8 085101 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|