Chin. Phys. Lett.  2022, Vol. 39 Issue (3): 037501    DOI: 10.1088/0256-307X/39/3/037501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Dynamic Cantilever Magnetometry of Paramagnetism with Slow Relaxation
Zhiyu Ma1,2, Kun Fan3, Qi Li1,2, Feng Xu1, Lvkuan Zou1*, Ning Wang1, Li-Min Zheng3*, and Fei Xue1*
1Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
3State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Cite this article:   
Zhiyu Ma, Kun Fan, Qi Li et al  2022 Chin. Phys. Lett. 39 037501
Download: PDF(1603KB)   PDF(mobile)(1706KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Dynamic cantilever magnetometry is a sensitive method that has been widely used in studying magnetic anisotropy in ferromagnetic materials and Fermi surface in quantum materials. We study a cobalt-iridium metal-metalloligand coordination polymer using dynamic cantilever magnetometry. The experimental data of dynamic cantilever magnetometry are well explained using the proposed model for Langevin paramagnetism with slow relaxation. Based on the proposed model, we calculate the magnetization and magnetic susceptibility of paramagnetic materials from frequency shifts of a cantilever. The extracted magnetization and magnetic susceptibility are consistent with those obtained from conventional DC and AC magnetometry. The proposed slow relaxation picture is probably a general model for explaining dynamic cantilever magnetometry data of paramagnetic materials, including previously observed dynamic cantilever magnetometry data of paramagnetic metals [Gysin et al. 2011 Nanotechnology 22 285715].
Received: 13 December 2021      Published: 01 March 2022
PACS:  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  75.20.-g (Diamagnetism, paramagnetism, and superparamagnetism)  
  72.25.Rb (Spin relaxation and scattering)  
  07.55.Jg (Magnetometers for susceptibility, magnetic moment, and magnetization measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/3/037501       OR      https://cpl.iphy.ac.cn/Y2022/V39/I3/037501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhiyu Ma
Kun Fan
Qi Li
Feng Xu
Lvkuan Zou
Ning Wang
Li-Min Zheng
and Fei Xue
[1] Gysin U, Rast S, Aste A, Speliotis T, Werle C, and Meyer E 2011 Nanotechnology 22 285715
[2] Stipe B C, Mamin H J, Stowe T D, Kenny T W, and Rugar D 2001 Phys. Rev. Lett. 86 2874
[3] Kamra A, Schreier M, Huebl H, and Goennenwein S T B 2014 Phys. Rev. B 89 184406
[4] Yu Y, Xu F, Guo S S, Wang N, Zou L K, Wang B M, Li R W, and Xue F 2020 Appl. Phys. Lett. 116 193102
[5] Wang H X, Song J H, Wang W P, Chen Y S, Shen X, Yao Y, Li J J, Sun J R, and Yu R C 2021 Chin. Phys. Lett. 38 087502
[6] Na S H, Wu W, and Luo J L 2020 Chin. Phys. Lett. 37 087301
[7] Xu F, Guo S S, Yu Y, Wang N, Zou L K, Wang B M, Li R W, and Xue F 2019 Phys. Rev. Appl. 11 054007
[8] Overweg H C, den Haan A M J, Eerkens H J, Alkemade P F A, Rooij A L L, Spreeuw R J C, Bossoni L, and Oosterkamp T H 2015 Appl. Phys. Lett. 107 072402
[9] Choi H, Kim Y W, Lee S G, Choi M S, Kim M S, and Choi J H 2017 Phys. Rev. B 95 064505
[10] Chen L, Yu F, Xiang Z, Asaba T, Tinsman C, Lawson B, Sass P M, Wu W, Kang B L, Chen X, and Li L 2018 Phys. Rev. Appl. 9 024005
[11] Li G, Xiang Z, Yu F, Asaba T, Lawson B, Cai P, Tinsman C, Berkley A, Wolgast S, Eo Y S, Kim D J, Kurdak C, Allen J W, Sun K, Chen X H, Wang Y Y, Fisk Z, and Li L 2014 Science 346 1208
[12] Moll P J W, Potter A C, Nair N L, Ramshaw B J, Modic K A, Riggs S, Zeng B, Ghimire N J, Bauer E D, Kealhofer R, Ronning F, and Analytis J G 2016 Nat. Commun. 7 12492
[13] Modic K A, Bachmann M D, Ramshaw B J, Arnold F, Shirer K R, Estry A, Betts J B, Ghimire N J, Bauer E D, Schmidt M, Baenitz M, Svanidze E, McDonald R D, Shekhter A, and Moll P J W 2018 Nat. Commun. 9 3975
[14] Semeghini G, Levine H, Keesling A, Ebadi S, Wang T T, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Samajdar R, Omran A, Sachdev S, Vishwanath A, Greiner M, Vuletić V, and Lukin M D 2021 Science 374 1242
[15] Wei Y, Ma X, Feng Z, Zhang Y, Zhang L, Yang H, Qi Y, Meng Z Y, Wang Y C, Shi Y, and Li S 2021 Chin. Phys. Lett. 38 097501
[16] Jia Y T, Gong C S, Liu Y X, Zhao J F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M, and Jin C Q 2020 Chin. Phys. Lett. 37 097404
[17] Leahy I A, Pocs C A, Siegfried P E, Graf D, Do S H, Choi K Y, Normand B, and Lee M 2017 Phys. Rev. Lett. 118 187203
[18] Yang C, Wang Z C, and Su G 2020 Chin. Phys. Lett. 37 087201
[19] Krivokapic I, Zerara M, Daku M L, Vargas A, Enachescu C, Ambrus C, Tregenna-Piggott P, Amstutz N, Krausz E, and Hauser A 2007 Coord. Chem. Rev. 251 364
[20] Shao D, Shi L, Yin L, Wang B L, Wang Z X, Zhang Y Q, and Wang X Y 2018 Chem. Sci. 9 7986
[21] Kurmoo M 2009 Chem. Soc. Rev. 38 1353
[22] Xie Z, Ma L, DeKrafft K E, Jin A, and Lin W 2010 J. Am. Chem. Soc. 132 922
[23] Greedan J E 2001 J. Mater. Chem. 11 37
[24] Kostakis G E, Perlepesb S P, Blatov V A, Proserpio D M, and Powell A K 2012 Coord. Chem. Rev. 256 1246
[25] Perfetti M 2017 Coord. Chem. Rev. 348 171
[26] Fan K, Xu F, Kurmoo M, Huang X D, Liao C H, Bao S S, Xue F, and Zheng L M 2020 Inorg. Chem. 59 8935
[27] Weber D P, Rüffer D, Buchter A, Xue F, Russo-Averchi E, Huber R, Berberich P, Arbiol J, Morral A F I, Grundler D, and Poggio M 2012 Nano Lett. 12 6139
[28] Gross B, Philipp S, Josten E, Leliaert J, Wetterskog E, Bergström L, and Poggio M 2021 Phys. Rev. B 103 014402
[29] Shamsudhin N, Tao Y, Sort J, Jang B, Degen C L, Nelson B J, and Pané S 2016 Small 12 6363
[30] Philipp S, Gross B, Reginka M, Merkel M, Claus M M, Sulliger M, Ehresmann A, and Poggio M 2021 Appl. Phys. Lett. 119 222406
[31] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
[32] Gil-Santos E, Ramos D, Martínez J, Fernández-Regúlez M, García R, Paulo  S, Calleja M, and Tamayo J 2010 Nat. Nanotechnol. 5 641
[33] Nagataki A, Takei K, Arie T, and Akita S 2015 Appl. Phys. Express 8 085101
Related articles from Frontiers Journals
[1] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Shangjie Tian, and Hechang Lei. Structures and Physical Properties of V-Based Kagome Metals CsV$_{6}$Sb$_{6}$ and CsV$_{8}$Sb$_{12}$[J]. Chin. Phys. Lett., 2021, 38(12): 037501
[2] Shaohua Wang, Qiangwei Yin, Hechang Lei. Physical Properties of [$A_{6}$Cl][Fe$_{24}$Se$_{26}$]($A$=K, Rb) with Self-Similar Structure[J]. Chin. Phys. Lett., 2020, 37(1): 037501
[3] Hui Liang, Shuai Zhang, Yu-Jia Long, Jun-Bao He, Jing Li, Xin-Min Wang, Zhi-An Ren, Gen-Fu Chen. Magnetic and Transport Properties of the Kondo Lattice Compound YbPtAs[J]. Chin. Phys. Lett., 2018, 35(7): 037501
[4] S. Salmi. R. Masrour, A. El Grini, K. Bouslykhane, A. Hourmatallah, N. Benzakour, M. Hamedoun. Effect of Zn Substitution on Magnetic Properties of CuFe$_{2}$O$_{4}$: a High-Temperature Series Expansions Study[J]. Chin. Phys. Lett., 2018, 35(1): 037501
[5] ZUO Hua-Kun, SHI Li-Ran, XIA Zheng-Cai, HUANG Jun-Wei, CHEN Bo-Rong, JIN Zhao, WEI Meng, OUYANG Zhong-Wen, CHENG Gang. The Magnetic Anisotropy and Complete Phase Diagram of CuFeO2 Measured in a Pulsed High Magnetic Field up to 75 T[J]. Chin. Phys. Lett., 2015, 32(4): 037501
[6] HE Qiang, GUO Yong-Quan. Structures and Magnetic Properties of Europium-Transition Metal-Gallium Ternary Intermetallic Compounds with 1:3 Type[J]. Chin. Phys. Lett., 2015, 32(01): 037501
[7] CHANG Hong, **, ZHAO Yong-Gang . Enhanced Magnetic and Ferroelectric Properties and Current-Voltage Hysteresis by Addition of La and Ti to BiFeO3 on 0.7%Nb−SrTiO3[J]. Chin. Phys. Lett., 2011, 28(6): 037501
[8] Ugur Topal**. Evolution of Structural and Magnetic Properties of BaFe12O19 with B2O3 Addition[J]. Chin. Phys. Lett., 2010, 27(11): 037501
[9] HU Ni, LU Zhi-Hong, CHENG Li, XIONG Rui, SHI Jing,. Magnetic Properties of Spin-Ladder Compound Sr14(Cu1-yFey)24O41[J]. Chin. Phys. Lett., 2010, 27(8): 037501
[10] PI Li, FAN E-Hua, XIAO Ying, ZHANG Yu-Heng. Magnetic and Electrical Transport Properties of Sr1-xLaxRuO3 (0≤x≤0.10)[J]. Chin. Phys. Lett., 2006, 23(8): 037501
[11] REN Miao-Juan, YAN Shi-Shen, JI Gang, CHEN Yan-Xue, SONG Hong-Qiang, MEI Liang-Mo. Magnetic and Transport Properties of ZnO/Co Nanomultilayers[J]. Chin. Phys. Lett., 2003, 20(12): 037501
[12] PENG Zhen-Sheng, LIU Ning, CAI Zhi-Rang, GUO Huan-Yin, TONG Wei, ZHANG Chang-Jing, ZHANG Yu-Heng. Influence of Gd Doping at A Site upon the Magnetic Structure of La0.7-xGdxSr0.3MnO3 Systems[J]. Chin. Phys. Lett., 2003, 20(4): 037501
[13] HOU Deng-Lu, JIANG En-Yong, LI Feng-Wu, BAI Hai-Li, ZHOU Xue-Zhi, Henry KUNKEL, Gwyn WILLIAMS. Critical Behaviour of Sintered SrRuO3[J]. Chin. Phys. Lett., 2002, 19(5): 037501
[14] WANG Wen-Quan, WANG Jian-Li, YANG Dong, TANG Ning, YANG Fu-Ming, WU Guang-Heng, JIN Han-Min. Synthesis and Magnetic Properties of Gd3 (Fe, Co, Cr)29 Compounds [J]. Chin. Phys. Lett., 2001, 18(7): 037501
[15] GU Ben-Xi, ZHANG Shi-Yuan, DU You-Wei. Magnetic Properties and Low-Field Magnetoresistance of Pr0.7Pb0.3MnO3 Single Crystals[J]. Chin. Phys. Lett., 2001, 18(4): 037501
Viewed
Full text


Abstract