CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Nanoscale Impact Ionization and Electroluminescence in a Biased Scanning-Tunneling-Microscope Junction |
Lehua Gu1, Shuang Wu1, Shuai Zhang1, and Shiwei Wu1,2,3,4* |
1State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, China 2Shanghai Qi Zhi Institute, Shanghai 200232, China 3Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China 4Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
|
|
Cite this article: |
Lehua Gu, Shuang Wu, Shuai Zhang et al 2022 Chin. Phys. Lett. 39 037801 |
|
|
Abstract Electroluminescence from a p-type GaAs(110) surface was induced by tunneling electrons in a scanning tunneling microscope under both polarities of bias voltage. The optical spectra exhibit a polarity-independent luminescence peak at 1.47 eV resulting from the exciton recombination. However, the quantum yield of photon emission at negative bias voltage is two orders of magnitude weaker than that at positive bias voltage. Moreover, the luminescence at negative bias voltage shows the linear dependence of bias voltage, distinct from the rapid rise due to resonant electron injection at positive bias. Furthermore, the threshold bias voltage for electroluminescence at negative bias is nearly twice the bandgap of GaAs, not simply satisfying the energy conservation for the creation of an electron–hole pair. Through theoretical calculation, we propose an impact ionization model to nicely explain the newly observed electroluminescence at negative bias voltage. We believe that this mechanism of impact ionization could be readily applied to other nanoscale optoelectronics including 2D semiconductors and 1D nanostructures.
|
|
Received: 29 December 2021
Editors' Suggestion
Published: 01 March 2022
|
|
|
|
|
|
[1] | Kuhnke K, Grosse C, Merino P, and Kern K 2017 Chem. Rev. 117 5174 |
[2] | Schultz J F, Li S, Jiang S, and Jiang N 2020 J. Phys.: Condens. Matter 32 463001 |
[3] | Berndt R, Gaisch R, Schneider W D, Gimzewski J K, Reihl B, Schlittler R R, and Tschudy M 1995 Phys. Rev. Lett. 74 102 |
[4] | Uehara Y, Fujita T, and Ushioda S 1999 Phys. Rev. Lett. 83 2445 |
[5] | Renaud P and Alvarado S F 1991 Phys. Rev. B 44 6340 |
[6] | Berndt R and Gimzewski J K 1992 Phys. Rev. B 45 14095 |
[7] | Downes A and Welland M E 1998 Phys. Rev. Lett. 81 1857 |
[8] | Thirstrup C, Sakurai M, Stokbro K, and Aono M 1999 Phys. Rev. Lett. 82 1241 |
[9] | Yokoyama T and Takiguchi Y 2001 Surf. Sci. 482–485 1163 |
[10] | Hoshino M and Yamamoto N 2002 MRS Online Proc. Library 738 723 |
[11] | Fujita D, Onishi K, and Niori N 2004 Nanotechnology 15 S355 |
[12] | Baffou G, Mayne A J, Comtet G, and Dujardin G 2008 Phys. Rev. B 77 165320 |
[13] | Reinhardt M, Schull G, Ebert P, and Berndt R 2010 Appl. Phys. Lett. 96 152107 |
[14] | Imada H, Miwa K, Jung J, Shimizu T K, Yamamoto N, and Kim Y 2015 Nanotechnology 26 365402 |
[15] | Qiu X H, Nazin G V, and Ho W 2003 Science 299 542 |
[16] | Dong Z C, Guo X L, Trifonov A S, Dorozhkin P S, Miki K, Kimura K, Yokoyama S, and Mashiko S 2004 Phys. Rev. Lett. 92 086801 |
[17] | Wu S W, Nazin G V, and Ho W 2008 Phys. Rev. B 77 205430 |
[18] | Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L, and Hou J G 2010 Nat. Photon. 4 50 |
[19] | Chen C, Chu P, Bobisch C A, Mills D L, and Ho W 2010 Phys. Rev. Lett. 105 217402 |
[20] | Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, and Kim Y 2016 Nature 538 364 |
[21] | Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, and Hou J G 2016 Nature 531 623 |
[22] | Doppagne B, Chong M C, Bulou H, Boeglin A, Scheurer F, and Schull G 2018 Science 361 251 |
[23] | Kimura K, Miwa K, Imada H, Imai-Imada M, Kawahara S, Takeya J, Kawai M, Galperin M, and Kim Y 2019 Nature 570 210 |
[24] | Miao J and Wang C 2021 Nano Res. 14 1878 |
[25] | Bulgarini G, E R M, Hocevar M, P A M B E, Kouwenhoven L P, and Zwiller V 2012 Nat. Photon. 6 455 |
[26] | Zhang S, Huang D, and Wu S 2016 Rev. Sci. Instrum. 87 063701 |
[27] | Feenstra R M, Stroscio J A, Tersoff J, and Fein A P 1987 Phys. Rev. Lett. 58 1192 |
[28] | Sze S M and Ng K K 2006 Physics of Semiconductor Devices (Hoboken, NJ: Wiley) |
[29] | Hauser J R 1966 J. Appl. Phys. 37 507 |
[30] | Alig R C, Bloom S, and Struck C W 1980 Phys. Rev. B 22 5565 |
[31] | Nakwaski W 1995 Physica B 210 1 |
[32] | Nichele F, Pal A N, Winkler R, Gerl C, Wegscheider W, Ihn T, and Ensslin K 2014 Phys. Rev. B 89 081306 |
[33] | Pommier D, Bretel R, López L E P, Fabre F, Mayne A, Boer-Duchemin E, Dujardin G, Schull G, Berciaud S, and Le M E 2019 Phys. Rev. Lett. 123 027402 |
[34] | Schuler B, Cochrane K A, Kastl C, Barnard E S, Wong E, Borys N J, Schwartzberg A M, Ogletree D F, Abajo F J G D, and Weber-Bargioni A 2020 Sci. Adv. 6 eabb5988 |
[35] | Wilson N P, Yao W, Shan J, and Xu X 2021 Nature 599 383 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|