Chin. Phys. Lett.  2022, Vol. 39 Issue (3): 037801    DOI: 10.1088/0256-307X/39/3/037801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Nanoscale Impact Ionization and Electroluminescence in a Biased Scanning-Tunneling-Microscope Junction
Lehua Gu1, Shuang Wu1, Shuai Zhang1, and Shiwei Wu1,2,3,4*
1State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, China
2Shanghai Qi Zhi Institute, Shanghai 200232, China
3Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
4Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Cite this article:   
Lehua Gu, Shuang Wu, Shuai Zhang et al  2022 Chin. Phys. Lett. 39 037801
Download: PDF(1047KB)   PDF(mobile)(1150KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electroluminescence from a p-type GaAs(110) surface was induced by tunneling electrons in a scanning tunneling microscope under both polarities of bias voltage. The optical spectra exhibit a polarity-independent luminescence peak at 1.47 eV resulting from the exciton recombination. However, the quantum yield of photon emission at negative bias voltage is two orders of magnitude weaker than that at positive bias voltage. Moreover, the luminescence at negative bias voltage shows the linear dependence of bias voltage, distinct from the rapid rise due to resonant electron injection at positive bias. Furthermore, the threshold bias voltage for electroluminescence at negative bias is nearly twice the bandgap of GaAs, not simply satisfying the energy conservation for the creation of an electron–hole pair. Through theoretical calculation, we propose an impact ionization model to nicely explain the newly observed electroluminescence at negative bias voltage. We believe that this mechanism of impact ionization could be readily applied to other nanoscale optoelectronics including 2D semiconductors and 1D nanostructures.
Received: 29 December 2021      Editors' Suggestion Published: 01 March 2022
PACS:  78.60.Fi (Electroluminescence)  
  (Electroluminescence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/3/037801       OR      https://cpl.iphy.ac.cn/Y2022/V39/I3/037801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lehua Gu
Shuang Wu
Shuai Zhang
and Shiwei Wu
[1] Kuhnke K, Grosse C, Merino P, and Kern K 2017 Chem. Rev. 117 5174
[2] Schultz J F, Li S, Jiang S, and Jiang N 2020 J. Phys.: Condens. Matter 32 463001
[3] Berndt R, Gaisch R, Schneider W D, Gimzewski J K, Reihl B, Schlittler R R, and Tschudy M 1995 Phys. Rev. Lett. 74 102
[4] Uehara Y, Fujita T, and Ushioda S 1999 Phys. Rev. Lett. 83 2445
[5] Renaud P and Alvarado S F 1991 Phys. Rev. B 44 6340
[6] Berndt R and Gimzewski J K 1992 Phys. Rev. B 45 14095
[7] Downes A and Welland M E 1998 Phys. Rev. Lett. 81 1857
[8] Thirstrup C, Sakurai M, Stokbro K, and Aono M 1999 Phys. Rev. Lett. 82 1241
[9] Yokoyama T and Takiguchi Y 2001 Surf. Sci. 482–485 1163
[10] Hoshino M and Yamamoto N 2002 MRS Online Proc. Library 738 723
[11] Fujita D, Onishi K, and Niori N 2004 Nanotechnology 15 S355
[12] Baffou G, Mayne A J, Comtet G, and Dujardin G 2008 Phys. Rev. B 77 165320
[13] Reinhardt M, Schull G, Ebert P, and Berndt R 2010 Appl. Phys. Lett. 96 152107
[14] Imada H, Miwa K, Jung J, Shimizu T K, Yamamoto N, and Kim Y 2015 Nanotechnology 26 365402
[15] Qiu X H, Nazin G V, and Ho W 2003 Science 299 542
[16] Dong Z C, Guo X L, Trifonov A S, Dorozhkin P S, Miki K, Kimura K, Yokoyama S, and Mashiko S 2004 Phys. Rev. Lett. 92 086801
[17] Wu S W, Nazin G V, and Ho W 2008 Phys. Rev. B 77 205430
[18] Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L, and Hou J G 2010 Nat. Photon. 4 50
[19] Chen C, Chu P, Bobisch C A, Mills D L, and Ho W 2010 Phys. Rev. Lett. 105 217402
[20] Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, and Kim Y 2016 Nature 538 364
[21] Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, and Hou J G 2016 Nature 531 623
[22] Doppagne B, Chong M C, Bulou H, Boeglin A, Scheurer F, and Schull G 2018 Science 361 251
[23] Kimura K, Miwa K, Imada H, Imai-Imada M, Kawahara S, Takeya J, Kawai M, Galperin M, and Kim Y 2019 Nature 570 210
[24] Miao J and Wang C 2021 Nano Res. 14 1878
[25] Bulgarini G, E R M, Hocevar M, P A M B E, Kouwenhoven L P, and Zwiller V 2012 Nat. Photon. 6 455
[26] Zhang S, Huang D, and Wu S 2016 Rev. Sci. Instrum. 87 063701
[27] Feenstra R M, Stroscio J A, Tersoff J, and Fein A P 1987 Phys. Rev. Lett. 58 1192
[28]Sze S M and Ng K K 2006 Physics of Semiconductor Devices (Hoboken, NJ: Wiley)
[29] Hauser J R 1966 J. Appl. Phys. 37 507
[30] Alig R C, Bloom S, and Struck C W 1980 Phys. Rev. B 22 5565
[31] Nakwaski W 1995 Physica B 210 1
[32] Nichele F, Pal A N, Winkler R, Gerl C, Wegscheider W, Ihn T, and Ensslin K 2014 Phys. Rev. B 89 081306
[33] Pommier D, Bretel R, López L E P, Fabre F, Mayne A, Boer-Duchemin E, Dujardin G, Schull G, Berciaud S, and Le M E 2019 Phys. Rev. Lett. 123 027402
[34] Schuler B, Cochrane K A, Kastl C, Barnard E S, Wong E, Borys N J, Schwartzberg A M, Ogletree D F, Abajo F J G D, and Weber-Bargioni A 2020 Sci. Adv. 6 eabb5988
[35] Wilson N P, Yao W, Shan J, and Xu X 2021 Nature 599 383
Related articles from Frontiers Journals
[1] Jingrui Ma, Haodong Tang, Xiangwei Qu, Guohong Xiang, Siqi Jia, Pai Liu, Kai Wang, and Xiao Wei Sun. A $dC/dV$ Measurement for Quantum-Dot Light-Emitting Diodes[J]. Chin. Phys. Lett., 2022, 39(12): 037801
[2] Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu, Fang Wang. Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer[J]. Chin. Phys. Lett., 2020, 37(2): 037801
[3] Qi Wang, Jun-Chi Yu, Tao Tao, Bin Liu, Ting Zhi, Xu Cen, Zi-Li Xie, Xiang-Qian Xiu, Yu-Gang Zhou, You-Dou Zheng, Rong Zhang. Fabrication and Characterization of GaN-Based Micro-LEDs on Silicon Substrate[J]. Chin. Phys. Lett., 2019, 36(8): 037801
[4] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 037801
[5] Sheng Cao, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. Carrier Dynamics Determined by Carrier-Phonon Coupling in InGaN/GaN Multiple Quantum Well Blue Light Emitting Diodes[J]. Chin. Phys. Lett., 2019, 36(2): 037801
[6] Qing-feng Wu, Sheng Cao, Chun-lan Mo, Jian-li Zhang, Xiao-lan Wang, Zhi-jue Quan, Chang-da Zheng, Xiao-ming Wu, Shuan Pan, Guang-xu Wang, Jie Ding, Long-quan Xu, Jun-lin Liu, Feng-yi Jiang. Effects of Hydrogen Treatment in Barrier on the Electroluminescence of Green InGaN/GaN Single-Quantum-Well Light-Emitting Diodes with V-Shaped Pits Grown on Si Substrates[J]. Chin. Phys. Lett., 2018, 35(9): 037801
[7] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 037801
[8] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 037801
[9] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 037801
[10] Xiao-Wang Fan, Jian-Ping Liu, Feng Zhang, Masao Ikeda, De-Yao Li, Shu-Ming Zhang, Li-Qun Zhang, Ai-Qin Tian, Peng-Yan Wen, Guo-Hong Ma, Hui Yang. Effect of Droop Phenomenon in InGaN/GaN Blue Laser Diodes on Threshold Current[J]. Chin. Phys. Lett., 2017, 34(9): 037801
[11] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 037801
[12] Wei-Jing Qi, Long-Quan Xu, Chun-Lan Mo, Xiao-Lan Wang, Jie Ding, Guang-Xu Wang, Shuan Pan, Jian-Li Zhang, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. The Efficiency Droop of InGaN-Based Green LEDs with Different Superlattice Growth Temperatures on Si Substrates via Temperature-Dependent Electroluminescence[J]. Chin. Phys. Lett., 2017, 34(7): 037801
[13] Lai Wang, Xiao Meng, Jung-Hoon Song, Tae-Soo Kim, Seung-Young Lim, Zhi-Biao Hao, Yi Luo, Chang-Zheng Sun, Yan-Jun Han, Bing Xiong, Jian Wang, Hong-Tao Li. A Method to Obtain Auger Recombination Coefficient in an InGaN-Based Blue Light-Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(1): 037801
[14] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 037801
[15] Xiao-Peng Lv, Hui Wang, Ling-Qiang Meng, Xiao-Fang Wei, Yong-Zhen Chen, Xiang-Bin Kong, Jian-Jun Liu, Jian-Xin Tang, Peng-Fei Wang, Ying Wang. High Efficiency and Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter[J]. Chin. Phys. Lett., 2016, 33(08): 037801
Viewed
Full text


Abstract