Chin. Phys. Lett.  2022, Vol. 39 Issue (2): 028202    DOI: 10.1088/0256-307X/39/2/028202
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Electrochemical Role of Transition Metals in Sn–Fe Alloy Revealed by Operando Magnetometry
Le-Qing Zhang1, Qing-Tao Xia1, Zhao-Hui Li1, Yuan-Yuan Han1, Xi-Xiang Xu1, Xin-Long Zhao1, Xia Wang1, Yuan-Yuan Pan1, Hong-Sen Li1, and Qiang Li1,2*
1College of Physics, Qingdao University, Qingdao 266071, China
2Weihai Innovation Institute, Qingdao University, Weihai 264200, China
Cite this article:   
Le-Qing Zhang, Qing-Tao Xia, Zhao-Hui Li et al  2022 Chin. Phys. Lett. 39 028202
Download: PDF(1368KB)   PDF(mobile)(1500KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As promising materials, alloy-type anode materials have been intensively investigated in both academia and industry. To release huge volume expansion during alloying/dealloying process, they are usually doped with transition metals. However, the electrochemical role of transition metals has not been fully understood. Here, pure Sn$_{3}$Fe films were deposited by sputtering, and the electrochemical mechanism was systematically investigated by operando magnetometry. We confirmed that Fe particles liberated by Li insertion recombine partially with Sn during the delithiation, while the stepwise increase in magnetization with the cycles demonstrates growth of Fe nanoparticles. In addition, we also found an unconventional increase of magnetization in the charging process, which can be attributed to the space charge storage at the interface of Fe/Li$_{x}$Sn. These critical findings pave the way for the mechanism understanding and development of high-performance Sn based alloy electrode materials.
Received: 05 November 2021      Published: 29 January 2022
PACS:  82.47.Aa (Lithium-ion batteries)  
  07.55.Jg (Magnetometers for susceptibility, magnetic moment, and magnetization measurements)  
  71.20.Be (Transition metals and alloys)  
  82.47.Tp (Electrochemical displays)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/2/028202       OR      https://cpl.iphy.ac.cn/Y2022/V39/I2/028202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Le-Qing Zhang
Qing-Tao Xia
Zhao-Hui Li
Yuan-Yuan Han
Xi-Xiang Xu
Xin-Long Zhao
Xia Wang
Yuan-Yuan Pan
Hong-Sen Li
and Qiang Li
[1] Armand M and Tarascon J M 2008 Nature 451 652
[2] Han Y et al. 2020 Small 16 1902841
[3] Barnes D G et al. 2013 PLOS ONE 8 e69446
[4] Zhou L M et al. 2018 Adv. Energy Mater. 8 1701415
[5] Li W H et al. 2020 J. Energy Chem. 50 416
[6] Ouyang C et al. 2005 Chin. Phys. Lett. 22 489
[7] Liu Y et al. 2021 Electrochim. Acta 396 139265
[8] Zhang L et al. 2020 Adv. Mater. 32 1908445
[9] Bruce P G et al. 2008 Angew. Chem. Int. Ed. Engl. 47 2930
[10] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[11] Park C M et al. 2010 Chem. Soc. Rev. 39 3115
[12] Zhao Y et al. 2019 ACS Nano 13 5602
[13] Yang S et al. 2003 Electrochem. Commun. 5 587
[14] Xin F X et al. 2015 ACS Appl. Mater. & Interfaces 7 7912
[15] Ying H and Han W Q 2017 Adv. Sci. 4 1700298
[16] Wu X et al. 2016 J. Power Sources 307 753
[17] Zhou X et al. 2016 Adv. Energy Mater. 6 1601177
[18] Ferrara G et al. 2012 J. Power Sources 211 103
[19] Park C and Sohn H 2010 Electrochim. Acta 17 4987
[20] Liang S et al. 2020 Small Methods 4 2000218
[21] Nguyen T L et al. 2018 Electrochim. Acta 278 25
[22] Shi H et al. 2018 Nano Lett. 18 3193
[23]Sony's new nexelion hybrid lithium ion bateries to have thirty-percent more capacity than conventional offering 2005 https://www.sony.com/en/SonyInfo/News/Press/200502/05-006E/
[24] Kim H et al. 2020 Chem. Rev. 120 6934
[25] Shen K et al. 2019 Adv. Energy Mater. 9 1900260
[26] Lu Y et al. 2014 Nat. Mater. 13 961
[27] Chamas M et al. 2013 Chem. Mater. 25 2410
[28] Chamas M et al. 2011 Electrochim. Acta 56 6732
[29] Dong Z et al. 2016 Adv. Sci. 3 1500229
[30] Mao O et al. 2019 J. Electrochem. Soc. 146 405
[31] Nwokeke U G et al. 2010 Chem. Mater. 22 2268
[32] Dong Z et al. 2019 ACS Omega 4 22345
[33] Wu Y and Liu N 2018 Chem 4 438
[34] Jangid M K and Mukhopadhyay A 2019 J. Mater. Chem. A 7 23679
[35] Yang Y et al. 2017 Adv. Mater. 29 1606922
[36] Kalantzopoulos G N et al. 2018 ChemPhysChem 19 519
[37] Topolovec S et al. 2016 J. Solid State Electrochem. 20 1491
[38] Klinser G et al. 2016 Solid State Ionics 293 64
[39] Li Q et al. 2021 Nat. Mater. 20 76
[40] Wang K et al. 2017 Carbon 125 375
[41] Li J T et al. 2010 J. Power Sources 195 8251
[42] Li S et al. 2020 Environ. Int. 138 105639
[43] Siegel G et al. 2015 Sci. Rep. 4 4429
[44] Wang Z et al. 2013 Energy & Environ. Sci. 6 87
[45] Gershinsky G et al. 2014 Energy & Environ. Sci. 7 2012
[46] Diandra L L and Rieke R D 1996 Chem. Mater. 8 1770
[47] Huber D L 2005 Small 1 482
[48] Wang F et al. 2011 J. Am. Chem. Soc. 133 18828
[49] Zhao L et al. 2014 Adv. Funct. Mater. 24 5557
[50] Mao O and Dahna J 1999 J. Electrochem. Soc. 146 414
[51] Li J T et al. 2011 J. Phys. Chem. C 115 7012
[52] Ionica-Bousquet C M et al. 2006 Chem. Mater. 18 6442
[53] Ouyang C Y et al. 2006 Chin. Phys. Lett. 23 61
[54] Zhang F et al. 2021 Matter 4 3605
[55] Li H et al. 2021 Adv. Mater. 33 2006629
[56] Li Z et al. 2021 J. Am. Chem. Soc. 143 12800
Related articles from Frontiers Journals
[1] Qingyu Dong, Ruowei Yi, Jizhen Qi, Yanbin Shen, and Liwei Chen. Probing the Air Storage Failure Mechanism of Ni-Rich Layered Cathode Materials[J]. Chin. Phys. Lett., 2022, 39(3): 028202
[2] Di-Xing Ni, Yao-Dong Liu, Zhi Deng, Dian-Cheng Chen, Xin-Xin Zhang, Tao Wang, Shuai Li, and Yu-Sheng Zhao. Wet Mechanical Milling Induced Phase Transition to Cubic Anti-Perovskite Li$_{2}$OHCl[J]. Chin. Phys. Lett., 2022, 39(2): 028202
[3] Zhekai Zhang, Jiyu Tian, Junfei Chen, Yugui He, Chaoyang Liu, Xinmiao Liang, and Jiwen Feng. Li Plating on Carbon Electrode Surface Probed by Low-Field Dynamic Nuclear Polarization $^{7}$Li NMR[J]. Chin. Phys. Lett., 2021, 38(12): 028202
[4] Panpan Li , Zhijie Feng , Tao Cheng , Yingchun Lyu, and Bingkun Guo. Effect of Fluorine Substitution on the Electrochemical Property and Structural Stability of a Lithium-Excess Cation Disordered Rock-Salt Cathode[J]. Chin. Phys. Lett., 2021, 38(8): 028202
[5] Jiachao Yang, Jian Zou, Chun Luo, Qiwen Ran, Xin Wang, Pengyu Chen, Chuan Hu, Xiaobin Niu, Haining Ji, and Liping Wang. FeSO$_{4}$ as a Novel Li-Ion Battery Cathode[J]. Chin. Phys. Lett., 2021, 38(6): 028202
[6] Changdong Qin, Le Wang, Pengfei Yan, Yingge Du, and Manling Sui. LiCoO$_{2}$ Epitaxial Film Enabling Precise Analysis of Interfacial Degradations[J]. Chin. Phys. Lett., 2021, 38(6): 028202
[7] Haijuan Wang, Xiao Lan, Yao Huang, Xunyong Jiang. Lithium Storage Property of Graphite/AlCuFe Quasicrystal Composites[J]. Chin. Phys. Lett., 2019, 36(9): 028202
[8] Li-Wei Jiang, Ya-Xiang Lu, Yue-Sheng Wang, Li-Lu Liu, Xing-Guo Qi, Cheng-Long Zhao, Li-Quan Chen, Yong-Sheng Hu. A High-Temperature $\beta$-Phase NaMnO$_{2}$ Stabilized by Cu Doping and Its Na Storage Properties[J]. Chin. Phys. Lett., 2018, 35(4): 028202
[9] Rong-Xue Qiao, Ming-Jian Zhang, Yi-Dong Liu, Wen-Ju Ren, Yuan Lin, Feng Pan. A Novel Real-Time State-of-Health and State-of-Charge Co-Estimation Method for LiFePO$_{4}$ Battery[J]. Chin. Phys. Lett., 2016, 33(07): 028202
[10] ZHOU Xiang, CHEN Ji, GU Lin, MIAO Ling. Li Storage Performance for the Composite Structure Of Graphene and Boron Fullerene[J]. Chin. Phys. Lett., 2015, 32(02): 028202
[11] LI Lin, MA Chao, YANG Huai-Xin, LI Jian-Qi. Splitting Process of Na-Birnessite Nanosheet via Transmission Electron Microscopy[J]. Chin. Phys. Lett., 2013, 30(8): 028202
[12] XIA Rong-Sen, CUI Zhong-Hui, LIU Bi-Qiu, GUO Xiang-Xin, ZHAO Jing-Tai. Evolutions of Crystal Structure, Stoichiometry and Electrochemical Behavior with Co Substitution in LiNi1-yCoyO2 Positive Electrodes[J]. Chin. Phys. Lett., 2010, 27(7): 028202
[13] LIN Zhi-Ping, ZHAO Yu-Jun, ZHAO Yan-Ming. Li- Site and Metal-Site Ion Doping in Phosphate-Olivine LiCoPO4 by First-Principles Calculation[J]. Chin. Phys. Lett., 2009, 26(3): 028202
[14] OUYANG Chu-Ying, WANG De-Yu, SHI Si-Qi, WANG Zhao-Xiang, LI Hong, HUANG Xue-Jie, CHEN Li-Quan. First Principles Study on NaxLi1-xFePO4 As Cathode Material for Rechargeable Lithium Batteries[J]. Chin. Phys. Lett., 2006, 23(1): 028202
[15] OUYANG Chu-Ying, SHI Si-Qi, WANG Zhao-Xiang, LI Hong, HUANG Xue-Jie, CHEN Li-Quan. Temperature-Dependent Dynamic Properties of LixMn2O4 in Monte Carlo Simulations[J]. Chin. Phys. Lett., 2005, 22(2): 028202
Viewed
Full text


Abstract