Chin. Phys. Lett.  2022, Vol. 39 Issue (2): 020701    DOI: 10.1088/0256-307X/39/2/020701
GENERAL |
High Temperature Melting Curve of Basaltic Glass by Laser Flash Heating
Yukai Zhuang1,2, Junwei Li2, Wenhua Lu3, Xueping Yang3, Zhixue Du3,4*, and Qingyang Hu2,4*
1Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
2Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
3State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
4Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Cite this article:   
Yukai Zhuang, Junwei Li, Wenhua Lu et al  2022 Chin. Phys. Lett. 39 020701
Download: PDF(2446KB)   PDF(mobile)(2550KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Basalt is an igneous rock originating from the cooling and solidification of magma and covers approximately 70% of Earth's surface. Basaltic glass melting in the deep Earth is a fundamental subject of research for understanding geophysics, geochemistry, and geodynamic processes. In this study, we design a laser flash heating system using two-dimensional, four-color multi-wavelength imaging radiometry to measure the basaltic glass melting temperature under high pressure conditions in diamond anvil cells. Our experiment not only determines the temperature at the center of heating but also constructs a temperature distribution map for the surface heating area, and enables us to assess the temperature gradient. Through precise temperature measurements, we observe that the basaltic glass melting temperature is higher than those in previous reports, which is near the normal upper-mantle isotherm, approaching the hot geotherm. This suggests that basalt should not melt in most of the normal upper mantle and the basaltic melts could exist in some hot regions.
Received: 24 November 2021      Editors' Suggestion Published: 29 January 2022
PACS:  07.20.Ka (High-temperature instrumentation; pyrometers)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  07.60.-j (Optical instruments and equipment)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/2/020701       OR      https://cpl.iphy.ac.cn/Y2022/V39/I2/020701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yukai Zhuang
Junwei Li
Wenhua Lu
Xueping Yang
Zhixue Du
and Qingyang Hu
[1] Hirose K and Fei Y 2002 Geochim. Cosmochim. Acta 66 2099
[2] Ohtani E and Maeda M 2001 Earth Planet. Sci. Lett. 193 69
[3] Yasuda A, Fujii T, and Kurita K 1994 J. Geophys. Res.: Solid Earth 99 9401
[4] Yoo C S 2020 Matter Radiat. Extremes 5 018202
[5] Hu Q and Mao H K 2021 Matter Radiat. Extremes 6 068101
[6] Andrault D, Pesce G, Bouhifd M A, Bolfan-Casanova N, Henot J M, and Mezouar M 2014 Science 344 892
[7] Pradhan G K, Fiquet G, Siebert J, Auzende A L, Morard G, Antonangeli D, and Garbarino G 2015 Earth Planet. Sci. Lett. 431 247
[8] Tschauner O, Huang S, Yang S, Humayun M, Liu W, Gilbert C S N, Bechtel H A, Tischler J, and Rossman G R 2021 Science 374 891
[9] Tateno S, Hirose K, Sakata S, Yonemitsu K, Ozawa H, Hirata T, Hirao N, and Ohishi Y 2018 J. Geophys. Res.: Solid Earth 123 5515
[10] Kavner A and Nugent C 2008 Rev. Sci. Instrum. 79 024902
[11] Boehler R and Chopelas A 1991 Geophys. Res. Lett. 18 1147
[12] Benedetti L R, Guignot N, and Farber D L 2007 J. Appl. Phys. 101 013109
[13] Shen G, Rivers M L, Wang Y, and Sutton S R 2001 Rev. Sci. Instrum. 72 1273
[14] Watanuki T, Shimomura O, Yagi T, Kondo T, and Isshiki M 2001 Rev. Sci. Instrum. 72 1289
[15] Zhou Q, Ma Y, Cui Q, Cui T, Zhang J, Xie Y, Yang K, and Zou G 2004 Rev. Sci. Instrum. 75 2432
[16] Jeanloz R and Kavner A 1996 Philos. Trans. R. Soc. A 354 1279
[17] Du Z, Amulele G, Benedetti L R, and Lee K K 2013 Rev. Sci. Instrum. 84 075111
[18] Yang L, Karandikar A, and Boehler R 2012 Rev. Sci. Instrum. 83 063905
[19] Kupenko I, Dubrovinsky L, Dubrovinskaia N, McCammon C, Glazyrin K, Bykova E, Boffa B T, Sinmyo R, Chumakov A I, Potapkin V, Kantor A, Ruffer R, Hanfland M, Crichton W, and Merlini M 2012 Rev. Sci. Instrum. 83 124501
[20] Campbell A J 2008 Rev. Sci. Instrum. 79 015108
[21] Benedetti L R and Loubeyre P 2007 High Press. Res. 24 423
[22] Mao H K, Xu J, and Bell P M 1986 J. Geophys. Res.: Solid Earth 91 4673
[23] Hirose K, Fei Y W, Ma Y Z, and Mao H K 1999 Nature 397 53
[24] Deng J, Du Z, Benedetti L R, and Lee K K 2017 J. Appl. Phys. 121 025901
[25] Andrault D, Bolfan-Casanova N, Nigro G L, Bouhifd M A, Garbarino G, and Mezouar M 2011 Earth Planet. Sci. Lett. 304 251
[26] Herzberg C 1995 Chem. Geol. 126 1
[27] Zhuang Y, Gan B, Cui Z, Tang R, Tao R, Hou M, Jiang G, Popescu C, Garbarino G, Zhang Y, and Hu Q 2021 Sci. Bull. (in press)
[28] Liu J, Hu Q, Kim D Y, Wu Z, Wang W, Xiao Y, Chow P, Meng Y, Prakapenka V B, Mao H K, and Mao W L 2017 Nature 551 494
Related articles from Frontiers Journals
[1] CHENG Jin-Hui, ZHANG Peng, AN Xue-Hui, WANG Kun, ZUO Yong, YAN Heng-Wei, LI Zhong. A Device for Measuring the Density and Liquidus Temperature of Molten Fluorides for Heat Transfer and Storage[J]. Chin. Phys. Lett., 2013, 30(12): 020701
[2] YANG Chun-Ling, DAI Jing-Min, HU Yan. Optimum Identifications of Spectral Emissivity and Temperature for Multi-Wavelength Pyrometry[J]. Chin. Phys. Lett., 2003, 20(10): 020701
Viewed
Full text


Abstract