THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
Chiral Anomaly in Non-Relativistic Systems: Berry Curvature and Chiral Kinetic Theory |
Lan-Lan Gao1 and Xu-Guang Huang1,2* |
1Physics Department and Center for Particle Physics and Field Theory, Fudan University, Shanghai 200438, China 2Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
|
|
Cite this article: |
Lan-Lan Gao and Xu-Guang Huang 2022 Chin. Phys. Lett. 39 021101 |
|
|
Abstract Chiral anomaly and the novel quantum phenomena it induces have been widely studied for Dirac and Weyl fermions. In most typical cases, the Lorentz covariance is assumed and thus the linear dispersion relations are maintained. However, in realistic materials, such as Dirac and Weyl semimetals, the nonlinear dispersion relations appear naturally. We develop a kinetic framework to study the chiral anomaly for Weyl fermions with nonlinear dispersions using the methods of Wigner function and semi-classical equations of motion. In this framework, the chiral anomaly is sourced by Berry monopoles in momentum space and could be enhanced or suppressed due to the windings around the Berry monopoles. Our results can help understand the chiral anomaly-induced transport phenomena in non-relativistic systems.
|
|
Received: 23 November 2021
Published: 29 January 2022
|
|
PACS: |
11.30.Rd
|
(Chiral symmetries)
|
|
72.10.Bg
|
(General formulation of transport theory)
|
|
|
|
|
[1] | Yan B and Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337 |
[2] | Armitage N P, Mele E J, and Vishwanath A 2018 Rev. Mod. Phys. 90 015001 |
[3] | Lv B Q, Qian T, and Ding H 2021 Rev. Mod. Phys. 93 025002 |
[4] | Kharzeev D E, McLerran L D, and Warringa H J 2008 Nucl. Phys. A 803 227 |
[5] | Fukushima K, Kharzeev D E, and Warringa H J 2008 Phys. Rev. D 78 074033 |
[6] | Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosic I, Fedorov A V, Zhong R D, Schneeloch J A, Gu G D, and Valla T 2016 Nat. Phys. 12 550 |
[7] | Huang X et al. 2015 Phys. Rev. X 5 031023 |
[8] | Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J, and Ong N P 2015 Science 350 413 |
[9] | Zhang C L et al. 2016 Nat. Commun. 7 10735 |
[10] | Fukushima K, Imaki S, and Qiu Z 2019 Phys. Rev. D 100 045013 |
[11] | Rong J N, Chen L, and Chang K 2021 Chin. Phys. Lett. 38 084501 |
[12] | Kharzeev D E, Liao J, Voloshin S A, and Wang G 2016 Prog. Part. Nucl. Phys. 88 1 |
[13] | Huang X G 2016 Rep. Prog. Phys. 79 076302 |
[14] | Hattori K and Huang X G 2017 Nucl. Sci. Tech. 28 26 |
[15] | Kharzeev D E and Liao J 2021 Nat. Rev. Phys. 3 55 |
[16] | Fang C, Gilbert M J, Dai X, and Bernevig B A 2012 Phys. Rev. Lett. 108 266802 |
[17] | Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, and Bernevig B A 2015 Nature 527 495 |
[18] | Sun Y, Wu S C, Ali M N, Felser C, and Yan B 2015 Phys. Rev. B 92 161107 |
[19] | Huang Z M, Zhou J, and Shen S Q 2017 Phys. Rev. B 96 085201 |
[20] | Zyuzin A A and Tiwari R P 2016 JETP Lett. 103 717 |
[21] | Nandy S, Sharma G, Taraphder A, and Tewari S 2017 Phys. Rev. Lett. 119 176804 |
[22] | Sharma G, Goswami P, and Tewari S 2017 Phys. Rev. B 96 045112 |
[23] | Yu Z M, Yao Y, and Yang S A 2016 Phys. Rev. Lett. 117 077202 |
[24] | Wei Y W, Li C K, Qi J, and Feng J 2018 Phys. Rev. B 97 205131 |
[25] | Gao J H, Liang Z T, Pu S, Wang Q, and Wang X N 2012 Phys. Rev. Lett. 109 232301 |
[26] | Chen J W, Pu S, Wang Q, and Wang X N 2013 Phys. Rev. Lett. 110 262301 |
[27] | Huang A, Shi S, Jiang Y, Liao J, and Zhuang P 2018 Phys. Rev. D 98 036010 |
[28] | Gao J H, Liang Z T, Wang Q, and Wang X N 2018 Phys. Rev. D 98 036019 |
[29] | Hidaka Y, Pu S, and Yang D L 2017 Phys. Rev. D 95 091901 |
[30] | Carignano S, Manuel C, and Torres-Rincon J M 2018 Phys. Rev. D 98 076005 |
[31] | Liu Y C, Gao L L, Mameda K, and Huang X G 2019 Phys. Rev. D 99 085014 |
[32] | Sheng X L, Wang Q, and Huang X G 2020 Phys. Rev. D 102 025019 |
[33] | Huang X G, Mitkin P, Sadofyev A V, and Speranza E 2020 J. High Energy Phys. 2020(10) 117 |
[34] | Hattori K, Hidaka Y, Yamamoto N, and Yang D L 2021 J. High Energy Phys. 2021(02) 001 |
[35] | Chen Z and Lin S 2021 arXiv:2109.08440 [hep-ph] |
[36] | Stephanov M A and Yin Y 2012 Phys. Rev. Lett. 109 162001 |
[37] | Chen J Y, Son D T, Stephanov M A, Yee H U, and Yin Y 2014 Phys. Rev. Lett. 113 182302 |
[38] | Huang X G and Sadofyev A V 2019 J. High Energy Phys. 2019(03) 084 |
[39] | Gorbar E V, Miransky V A, Shovkovy I A, and Sukhachov P O 2017 Phys. Rev. Lett. 118 127601 |
[40] | Landsteiner K 2014 Phys. Rev. B 89 075124 |
[41] | Gao L L, Kaushik S, Kharzeev D E, and Philip E J 2021 Phys. Rev. B 104 064307 |
[42] | Elze H T, Gyulassy M, and Vasak D 1986 Nucl. Phys. B 276 706 |
[43] | Vasak D, Gyulassy M, and Elze H T 1987 Ann. Phys. 173 462 |
[44] | Sundaram G and Niu Q 1999 Phys. Rev. B 59 14915 |
[45] | Xiao D, Chang M C, and Niu Q 2010 Rev. Mod. Phys. 82 1959 |
[46] | Xiao D, Shi J R, and Niu Q 2005 Phys. Rev. Lett. 95 137204 |
[47] | Son D T and Yamamoto N 2012 Phys. Rev. Lett. 109 181602 |
[48] | Huang X G 2016 Sci. Rep. 6 20601 |
[49] | Yamamoto N 2016 Phys. Rev. D 93 065017 |
[50] | Son D T and Yamamoto N 2013 Phys. Rev. D 87 085016 |
[51] | Bliokh K Y and Bliokh Y P 2004 Phys. Lett. A 333 181 |
[52] | Onoda M, Murakami S, and Nagaosa N 2004 Phys. Rev. Lett. 93 083901 |
[53] | Yamamoto N 2017 Phys. Rev. D 96 051902 |
[54] | Stiepan H M and Teufel S 2013 Commun. Math. Phys. 320 821 |
[55] | Yee H U and Yi P 2020 Phys. Rev. D 101 045007 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|