Chin. Phys. Lett.  2022, Vol. 39 Issue (10): 100701    DOI: 10.1088/0256-307X/39/10/100701
GENERAL |
Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations
Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran*
Department of Physics, Capital Normal University, Beijing 100048, China
Cite this article:   
Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran 2022 Chin. Phys. Lett. 39 100701
Download: PDF(12270KB)   PDF(mobile)(12829KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Given an image of a white shoe drawn on a blackboard, how are the white pixels deemed (say by human minds) to be informative for recognizing the shoe without any labeling information on the pixels? Here we investigate such a “white shoe” recognition problem from the perspective of tensor network (TN) machine learning and quantum entanglement. Utilizing a generative TN that captures the probability distribution of the features as quantum amplitudes, we propose an unsupervised recognition scheme of informative features with variations of entanglement entropy (EE) caused by designed measurements. In this way, a given sample, where the values of its features are statistically meaningless, is mapped to the variations of EE that statistically characterize the gain of information. We show that the EE variations identify the features that are critical to recognize this specific sample, and the EE itself reveals the information distribution of the probabilities represented by the TN model. The signs of the variations further reveal the entanglement structures among the features. We test the validity of our scheme on a toy dataset of strip images, the MNIST dataset of hand-drawn digits, the fashion-MNIST dataset of the pictures of fashion articles, and the images of nerve cord. Our scheme opens the avenue to the quantum-inspired and interpreted unsupervised learning, which can be applied to, e.g., image segmentation and object detection.
Received: 08 August 2022      Published: 25 September 2022
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/10/100701       OR      https://cpl.iphy.ac.cn/Y2022/V39/I10/100701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sheng-Chen Bai
Yi-Cheng Tang
and Shi-Ju Ran
[1] Barlow H B 1989 Neural Comput. 1 295
[2] Wang Y, Yao Q, Kwok J T, and Ni L M 2020 ACM Comput. Surv. 53 63
[3]Molnar C 2022 Interpretable Machine Learning 2nd edn (Osano, Inc., A Public Benefit Corporation)
[4] Rudin C, Chen C, Chen Z, Huang H, Semenova L, and Zhong C 2022 Stat. Surv. 16 1
[5]Gilpin L H, Bau D, Yuan B Z, Bajwa A, Specter M, and Kagal L 2018 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) pp 80–89
[6]Gordon, Greenspan, and Goldberger 2003 Proceedings Ninth IEEE International Conference on Computer Vision pp 370–377
[7]Li F F, Fergus R, and Perona P 2003 Proceedings Ninth IEEE International Conference on Computer Vision pp 1134–114
[8] Verstraete F, Murg V, and Cirac J I 2008 Adv. Phys. 57 143
[9] Cirac J I and Verstraete F 2009 J. Phys. A 42 504004
[10]Ran S J, Tirrito E, Peng C, Chen X, Tagliacozzo L, Su G, and Lewenstein M 2020 Tensor Network Contractions: Methods and Applications to Quantum Many-Body Systems (Berlin: Springer)
[11] Orús R 2019 Nat. Rev. Phys. 1 538
[12] Cirac J I, Pérez-García D, Schuch N, and Verstraete F 2021 Rev. Mod. Phys. 93 045003
[13] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, and Lloyd S 2017 Nature 549 195
[14]Stoudenmire E and Schwab D J 2016 Advances in Neural Information Processing Systems 29 (Curran Associates, Inc.) pp 4799–4807
[15] Liu D, Ran S J, Wittek P, Peng C, García R B, Su G, and Lewenstein M 2019 New J. Phys. 21 073059
[16] Sun Z Z, Peng C, Liu D, Ran S J, and Su G 2020 Phys. Rev. B 101 075135
[17] Cheng S, Wang L, and Zhang P 2021 Phys. Rev. B 103 125117
[18] Stoudenmire E M 2018 Quantum Sci. Technol. 3 034003
[19] Han Z Y, Wang J, Fan H, Wang L, and Zhang P 2018 Phys. Rev. X 8 031012
[20] Cheng S, Wang L, Xiang T, and Zhang P 2019 Phys. Rev. B 99 155131
[21] Vieijra T, Vanderstraeten L, and Verstraete F 2022 arXiv:2202.08177 [quant-ph]
[22] Liu Y, Li W J, Zhang X, Lewenstein M, Su G, and Ran S J 2021 Front. Appl. Math. Stat. 7 716044
[23] Ran S J, Sun Z Z, Fei S M, Su G, and Lewenstein M 2020 Phys. Rev. Res. 2 033293
[24] Wang J, Roberts C, Vidal G, and Leichenauer S 2020 arXiv:2006.02516
[25] Wang K, Xiao L, Yi W, Ran S J, and Xue P 2021 Photon. Res. 9 2332
[26] Wall M L, Abernathy M R, and Quiroz G 2021 Phys. Rev. Res. 3 023010
[27] Deng L 2012 IEEE Signal Process. Mag. 29 141
[28] Xiao H, Rasul K, and Vollgraf R 2017 arXiv:1708.07747 [cs.LG]
[29] Solorio-Fernández S, Carrasco-Ochoa J A, and Martínez-Trinidad J F 2020 Artificial Intell. Rev. 53 907
[30] Varshavsky R, Gottlieb A, Linial M, and Horn D 2006 Bioinformatics 22 e507
[31] Tabakhi S, Najafi A, Ranjbar R, and Moradi P 2015 Neurocomputing 168 1024
[32]Dy J G and Brodley C E 2004 J. Mach. Learn. Res. 5 845
[33] Kim S B and Rattakorn P 2011 Expert Syst. Appl. 38 5704
[34] Yao J, Mao Q, Goodison S, Mai V, and Sun Y 2015 Pattern Recognit. Lett. 53 100
[35] Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A, Pulokas J, Tomancak P, and Hartenstein V 2010 PLOS Biol. 8 e1000502
[36]Here we avoid to use Dirac's symbols for readers who are not familiar with quantum physics. We use a bold letter to represent a tensor (or matrix, vector, such as ${\boldsymbol\varPsi}$), and the same normal letter with lower indexes to represent the tensor elements (such as $\varPsi_{s_1}\ldots{s_{_{\scriptstyle M}}}$).
[37]Pérez-García D, Verstraete F, Wolf M M, and Cirac J I 2007 Quantum Inf. Comput. 7 401
[38] Oseledets I V 2011 SIAM J. Sci. Comput. 33 2295
[39] White S R 1992 Phys. Rev. Lett. 69 2863
[40] White S R 1993 Phys. Rev. B 48 10345
Related articles from Frontiers Journals
[1] Xi-Ci Yang, Z. Y. Xie, and Xiao-Tao Yang. Exploring Explicit Coarse-Grained Structure in Artificial Neural Networks[J]. Chin. Phys. Lett., 2023, 40(2): 100701
[2] Jian-Gang Kong, Qing-Xu Li, Jian Li, Yu Liu, and Jia-Ji Zhu. Self-Supervised Graph Neural Networks for Accurate Prediction of Néel Temperature[J]. Chin. Phys. Lett., 2022, 39(6): 100701
[3] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 100701
[4] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 100701
[5] Huikang Huang, Haozhen Situ, and Shenggen Zheng. Bidirectional Information Flow Quantum State Tomography[J]. Chin. Phys. Lett., 2021, 38(4): 100701
[6] Yaoyu Zhang, Tao Luo, Zheng Ma, and Zhi-Qin John Xu. A Linear Frequency Principle Model to Understand the Absence of Overfitting in Neural Networks[J]. Chin. Phys. Lett., 2021, 38(3): 100701
[7] Lin Zhuang, Qijun Ye, Ding Pan, Xin-Zheng Li. Discriminating High-Pressure Water Phases Using Rare-Event Determined Ionic Dynamical Properties[J]. Chin. Phys. Lett., 2020, 37(4): 100701
[8] Jin-Fa Wang, Xiao Liu, Hai Zhao, Xing-Chi Chen. Anomaly Detection of Complex Networks Based on Intuitionistic Fuzzy Set Ensemble[J]. Chin. Phys. Lett., 2018, 35(5): 100701
[9] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 100701
[10] ZHANG Xiao-Yan, MENG Yao-Yong, **, ZHANG Hao, OU Wen-Juan, LIU Song-Hao . Fast Nondestructive Identification of Endothelium Corneum Gigeriae Galli Using Visible/Near-Infrared Spectroscopy[J]. Chin. Phys. Lett., 2011, 28(12): 100701
[11] Junaid Ali Khan**, Muhammad Asif Zahoor Raja**, Ijaz Mansoor Qureshi . Novel Approach for a van der Pol Oscillator in the Continuous Time Domain[J]. Chin. Phys. Lett., 2011, 28(11): 100701
[12] Junaid Ali Khan*, Muhammad Asif Zahoor Raja**, Ijaz Mansoor Qureshi . Stochastic Computational Approach for Complex Nonlinear Ordinary Differential Equations[J]. Chin. Phys. Lett., 2011, 28(2): 100701
[13] ZHONG Qi-Shui, YU Yong-Bin, YU Jue-Bang. Fuzzy Modeling and Impulsive Control of a Memristor-Based Chaotic System[J]. Chin. Phys. Lett., 2010, 27(2): 100701
[14] YOOER Chi-Feng, XU Jian-Xue, ZHANG Xin-Hua. New Canards Bursting and Canards Periodic-Chaotic Sequence[J]. Chin. Phys. Lett., 2009, 26(7): 100701
[15] LIU Na, GUAN Zhi-Hong. The chaotification of discrete Hopfield neural networks via impulsive control[J]. Chin. Phys. Lett., 2009, 26(7): 100701
Viewed
Full text


Abstract