Chin. Phys. Lett.  2022, Vol. 39 Issue (10): 100202    DOI: 10.1088/0256-307X/39/10/100202
GENERAL |
Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits
Wen Zheng1†, Jianwen Xu1†, Zhuang Ma1, Yong Li1, Yuqian Dong1, Yu Zhang1, Xiaohan Wang1, Guozhu Sun2, Peiheng Wu2, Jie Zhao1, Shaoxiong Li1, Dong Lan1*, Xinsheng Tan1*, and Yang Yu1*
1National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
2School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Cite this article:   
Wen Zheng, Jianwen Xu, Zhuang Ma et al  2022 Chin. Phys. Lett. 39 100202
Download: PDF(7533KB)   PDF(mobile)(7537KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Topology played an important role in physics research during the last few decades. In particular, the quantum geometric tensor that provides local information about topological properties has attracted much attention. It will reveal interesting topological properties but have not been measured in non-Abelian systems. Here, we use a four-qubit quantum system in superconducting circuits to construct a degenerate Hamiltonian with parametric modulation. By manipulating the Hamiltonian with periodic drivings, we simulate the Bernevig–Hughes–Zhang model and obtain the quantum geometric tensor from interference oscillation. In addition, we reveal its topological feature by extracting the topological invariant, demonstrating an effective protocol for quantum simulation of a non-Abelian system.
Received: 09 August 2022      Express Letter Published: 08 September 2022
PACS:  02.40.-k (Geometry, differential geometry, and topology)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.67.Lx (Quantum computation architectures and implementations)  
  85.25.\textminusj  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/10/100202       OR      https://cpl.iphy.ac.cn/Y2022/V39/I10/100202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen Zheng
Jianwen Xu
Zhuang Ma
Yong Li
Yuqian Dong
Yu Zhang
Xiaohan Wang
Guozhu Sun
Peiheng Wu
Jie Zhao
Shaoxiong Li
Dong Lan
Xinsheng Tan
and Yang Yu
[1]Nakahara M 2018 Geometry, Topology and Physics (New York: CRC Press)
[2] Wu T T and Yang C N 1975 Phys. Rev. D 12 3845
[3] Wu T T and Yang C N 1976 Nucl. Phys. B 107 365
[4] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[5] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[6] Goldman N, Juzeliūnas G, Öhberg P, and Spielman I B 2014 Rep. Prog. Phys. 77 126401
[7] Armitage N P, Mele E J, and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[8] Zhang D W, Zhu Y Q, Zhao Y X, Yan H, and Zhu S L 2018 Adv. Phys. 67 253
[9] Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, and Carusotto I 2019 Rev. Mod. Phys. 91 015006
[10] Buluta I and Nori F 2009 Science 326 108
[11] Bliokh K Y, Smirnova D, and Nori F 2015 Science 348 1448
[12] Provost J P and Vallee G 1980 Commun. Math. Phys. 76 289
[13] Campos Venuti L and Zanardi P 2007 Phys. Rev. Lett. 99 095701
[14] Ma Y Q, Chen S, Fan H, and Liu W M 2010 Phys. Rev. B 81 245129
[15] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
[16] Wen X G 1991 Phys. Rev. B 44 2664
[17] Wen X G 2017 Rev. Mod. Phys. 89 041004
[18] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94
[19] Pachos J, Zanardi P, and Rasetti M 1999 Phys. Rev. A 61 010305(R)
[20]Bohm A, Mostafazadeh A, Koizumi H, Niu Q, and Zwanziger J 2003 The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics (Berlin: Springe-Verlag)
[21] Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 187902
[22] Zhu S L and Zanardi P 2005 Phys. Rev. A 72 020301(R)
[23] Filipp S, Klepp J, Hasegawa Y, Plonka-Spehr C, Schmidt U, Geltenbort P, and Rauch H 2009 Phys. Rev. Lett. 102 030404
[24] Zhao P Z, Cui X D, Xu G F, Sjöqvist E, and Tong D M 2017 Phys. Rev. A 96 052316
[25] Wootters W K 1981 Phys. Rev. D 23 357
[26] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[27] Zanardi P and Paunković N 2006 Phys. Rev. E 74 031123
[28] Zanardi P, Giorda P, and Cozzini M 2007 Phys. Rev. Lett. 99 100603
[29]Sachdev S 2011 Quantum Phase Transitions 2nd edn (Cambridge: Cambridge University Press)
[30] Carollo A, Valenti D, and Spagnolo B 2020 Phys. Rep. 838 1
[31] Dey A, Mahapatra S, Roy P, and Sarkar T 2012 Phys. Rev. E 86 031137
[32] Dirac P A M 1931 Proc. R. Soc. Lond. A 133 60
[33] Xiao D, Chang M C, and Niu Q 2010 Rev. Mod. Phys. 82 1959
[34] Ray M W, Ruokokoski E, Kandel S, Möttönen M, and Hall D S 2014 Nature 505 657
[35] Palumbo G and Goldman N 2018 Phys. Rev. Lett. 121 170401
[36] Tan X, Zhang D W, Zheng W, Yang X, Song S, Han Z, Dong Y, Wang Z, Lan D, Yan H, Zhu S L, and Yu Y 2021 Phys. Rev. Lett. 126 017702
[37] Chen M, Li C, Palumbo G, Zhu Y Q, Goldman N, and Cappellaro P 2022 Science 375 1017
[38] Zhang S C and Hu J 2001 Science 294 823
[39] Yang C N 1978 J. Math. Phys. 19 320
[40] Sugawa S, Salces-Carcoba F, Perry A R, Yue Y, and Spielman I B 2018 Science 360 1429
[41] Kolodrubetz M 2016 Phys. Rev. Lett. 117 015301
[42] Weisbrich H, Klees R, Rastelli G, and Belzig W 2021 PRX Quantum 2 010310
[43] Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111
[44] Duan L M, Cirac J I, and Zoller P 2001 Science 292 1695
[45] Sugawa S, Salces-Carcoba F, Yue Y, Putra A, and Spielman I B 2021 npj Quantum Inf. 7 144
[46] Nayak C, Simon S H, Stern A, Freedman M, and Sarma S D 2008 Rev. Mod. Phys. 80 1083
[47] Sjöqvist E, Tong D M, Andersson L M, Hessmo B, Johansson M, and Singh K 2012 New J. Phys. 14 103035
[48] Xu G F, Zhang J, Tong D M, Sjöqvist E, and Kwek L C 2012 Phys. Rev. Lett. 109 170501
[49] Oreshkov O, Brun T A, and Lidar D A 2009 Phys. Rev. Lett. 102 070502
[50] Wu L A, Zanardi P, and Lidar D A 2005 Phys. Rev. Lett. 95 130501
[51] Ozawa T and Goldman N 2018 Phys. Rev. B 97 201117(R)
[52] Tan X, Zhang D W, Yang Z, Chu J, Zhu Y Q, Li D, Yang X, Song S, Han Z, Li Z, Dong Y, Yu H F, Yan H, Zhu S L, and Yu Y 2019 Phys. Rev. Lett. 122 210401
[53] Yu M et al. 2019 Natl. Sci. Rev. 7 254
[54] Weisbrich H, Rastelli G, and Belzig W 2021 Phys. Rev. Res. 3 033122
[55] McKay D C, Filipp S, Mezzacapo A, Magesan E, Chow J M, and Gambetta J M 2016 Phys. Rev. Appl. 6 064007
[56] Reagor M et al. 2018 Sci. Adv. 4 eaao3603
[57] Chu J, Li D, Yang X, Song S, Han Z, Yang Z, Dong Y, Zheng W, Wang Z, Yu X, Lan D, Tan X, and Yu Y 2020 Phys. Rev. Appl. 13 064012
[58] Bernevig B A, Hughes T L, and Zhang S C 2006 Science 314 1757
[59] Lv Q X, Du Y X, Liang Z T, Liu H Z, Liang J H, Chen L Q, Zhou L M, Zhang S C, Zhang D W, Ai B Q, Yan H, and Zhu S L 2021 Phys. Rev. Lett. 127 136802
[60] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[61] Zhang A 2022 Chin. Phys. B 31 040201
[62] von Gersdorff G and Chen W 2021 Phys. Rev. B 104 195133
[63] Mera B, Zhang A, and Goldman N 2022 SciPost Phys. 12 018
[64] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[65] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[66] Sheng L, Sheng D N, Ting C S, and Haldane F D M 2005 Phys. Rev. Lett. 95 136602
[67] Sheng D N, Weng Z Y, Sheng L, and Haldane F D M 2006 Phys. Rev. Lett. 97 036808
[68] Sheng L, Li H C, Yang Y Y, Sheng D N, and Xing D Y 2013 Chin. Phys. B 22 067201
Related articles from Frontiers Journals
[1] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 100202
[2] Zhao-Wen Yan, Xiao-Li Wang, Min-Li Li. Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2017, 34(7): 100202
[3] K. T. Chan, H. Zainuddin, K. A. M. Atan, A. A. Siddig. Computing Quantum Bound States on Triply Punctured Two-Sphere Surface[J]. Chin. Phys. Lett., 2016, 33(09): 100202
[4] Long Du, Yong-Long Wang, Guo-Hua Liang, Guang-Zhen Kang, Hong-Shi Zong. Schr?dinger Equation of a Particle on a Rotating Curved Surface[J]. Chin. Phys. Lett., 2016, 33(03): 100202
[5] CHAN Kar-Tim, Hishamuddin Zainuddin, Saeid Molladavoudi. Computation of Quantum Bound States on a Singly Punctured Two-Torus[J]. Chin. Phys. Lett., 2013, 30(1): 100202
[6] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 100202
[7] JIA Xiao-Yu, WANG Na. Geometric Approach to Lie Symmetry of Discrete Time Toda Equation[J]. Chin. Phys. Lett., 2009, 26(8): 100202
[8] CAO Li-Mei, SUN Hua-Fei, ZHANG Zhen-Ning. Geometric Description of Fibre Bundle Surface for Birkhoff System[J]. Chin. Phys. Lett., 2009, 26(3): 100202
[9] SHI Chang-Guang. Geometric Property of the Faddeev Model[J]. Chin. Phys. Lett., 2008, 25(3): 100202
[10] DUAN Yi-Shi, WU Shao-Feng. Regular Magnetic Monopole from Generalized ’t Hooft Tensor[J]. Chin. Phys. Lett., 2006, 23(11): 100202
[11] DUAN Yi-Shi, YANG Jie. The Topological Inner Structure of Chern--Simons Tensor Current and the World-Sheet of Strings[J]. Chin. Phys. Lett., 2005, 22(5): 100202
[12] QU Chang-Zheng, YAO Ruo-Xia, LI Zhi-Bin. Two-Component Wadati--Konno--Ichikawa Equation and Its Symmetry Reductions[J]. Chin. Phys. Lett., 2004, 21(11): 100202
[13] DUAN Yi-Shi, REN Ji-Rong, YANG Jie. Cosmic Strings and Quintessence[J]. Chin. Phys. Lett., 2003, 20(12): 100202
[14] YANG Guo-Hong, JIANG Ying, DUAN Yi-Shi. Topological Quantization of k-Dimensional Topological Defects and Motion Equations[J]. Chin. Phys. Lett., 2001, 18(5): 100202
[15] Integer and Half-Integer Quantization Conditions in Quantum Mechanics. Integer and Half-Integer Quantization Conditions in Quantum Mechanics[J]. Chin. Phys. Lett., 2001, 18(4): 100202
Viewed
Full text


Abstract