Chin. Phys. Lett.  2022, Vol. 39 Issue (10): 100201    DOI: 10.1088/0256-307X/39/10/100201
GENERAL |
Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions
Wen-Xiu Ma*
1Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
2Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
3Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA
4School of Mathematical and Statistical Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
Cite this article:   
Wen-Xiu Ma 2022 Chin. Phys. Lett. 39 100201
Download: PDF(421KB)   PDF(mobile)(427KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We construct matrix integrable fourth-order nonlinear Schrödinger equations through reducing the Ablowitz–Kaup–Newell–Segur matrix eigenvalue problems. Based on properties of eigenvalue and adjoint eigenvalue problems, we solve the corresponding reflectionless Riemann–Hilbert problems, where eigenvalues could equal adjoint eigenvalues, and formulate their soliton solutions via those reflectionless Riemann–Hilbert problems. Soliton solutions are computed for three illustrative examples of scalar and two-component integrable fourth-order nonlinear Schrödinger equations.
Received: 03 August 2022      Published: 14 September 2022
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/10/100201       OR      https://cpl.iphy.ac.cn/Y2022/V39/I10/100201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Xiu Ma
[1]Das A 1989 Integrable Models (Singapore: World Scientific)
[2]Haberman R 2013 Applied Partial Differential Equations 5th edn (New Jersey: Pearson)
[3]Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia: SIAM)
[4]Drazin P G and Johnson R S 1989 Solitons: An Introduction (Cambridge: Cambridge University Press)
[5] Ablowitz M J and Musslimani Z H 2017 Stud. Appl. Math. 139 7
[6] Ma W X 2020 Appl. Math. Lett. 102 106161
[7] Ma W X, Huang Y H, and Wang F D 2020 Stud. Appl. Math. 145 563
[8] Ma W X 2019 Nonlinear Anal.: Real World Appl. 47 1
[9] Ma W X 2022 Mod. Phys. Lett. B 36 2250094
[10] Ma W X 2021 Partial Differ. Equ. Appl. Math. 4 100190
[11]Novikov S P, Manakov S V, Pitaevskii L P, and Zakharov V E 1984 Theory of Solitons: the Inverse Scattering Method (New York: Consultants Bureau)
[12]Yang J 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia: SIAM)
[13] Wang D S, Zhang D J, and Yang J 2010 J. Math. Phys. 51 023510
[14] Xiao Y and Fan E G 2016 Chin. Ann. Math. Ser. B 37 373
[15] Geng X G and Wu J P 2016 Wave Motion 60 62
[16] Yang J 2019 Phys. Lett. A 383 328
[17] Ma W X 2021 Proc. Am. Math. Soc. 149 251
[18] Ma W X 2022 Acta Math. Acad. Sci. Hung. 42B 127
[19] Ma W X 2022 J. Geom. Phys. 177 104522
[20]Hasegawa A 1989 Optical Solitons in Fibers (Berlin: Springer)
[21] Svinolupov S I and Sokolov V V 1994 Theor. Math. Phys. 100 959
[22] Aristophanes D and Müller-Hoissen F 2010 Inverse Probl. 26 095007
[23] Cao Q H and Dai C Q 2021 Chin. Phys. Lett. 38 090501
[24] Wen X K, Feng R, Lin J H, Liu W, Chen F, and Yang Q 2021 Optik 248 168092
[25] Fang Y, Wu G Z, Wen X K, Wang Y Y, and Dai C Q 2022 Opt. Laser Technol. 155 108428
[26]Whitham G B 1974 Linear and Nonlinear Waves (New York: John Wiley)
[27] Ma W X 2022 Physica D 430 133078
[28] Ma W X 2019 Math. Methods Appl. Sci. 42 1099
[29] Zhang H Q and Chen F 2021 Chaos 31 023129
[30] Ma W X 2021 Symmetry 13 2205
[31] Ma W X 2022 Proc. Amer. Math. Soc. Ser. B 9 1
[32] Xin X P, Liu Y T, Xia Y R, and Liu H Z 2021 Appl. Math. Lett. 119 107209
[33] Wazwaz A M 2021 Waves Random Complex Media 31 867
[34] Ma W X and Zhou Y 2018 J. Differ. Equ. 264 2633
[35] Sulaiman T A, Yusuf A, Abdeljabbar A, and Alquran M 2021 J. Geom. Phys. 169 104347
[36] Xu Z X and Chow K W 2016 Appl. Math. Lett. 56 72
[37] Rao J G, Z, Y S, Fokas A S, and He J S 2018 Nonlinearity 31 4090
[38] Ma W X and You Y 2005 Trans. Am. Math. Soc. 357 1753
[39] Abdeljabbar A 2021 Partial Differ. Equ. Appl. Math. 3 100022
[40]Gesztesy F and Holden H 2003 Soliton Equations and Their Algebro-Geometric Solutions: (1+1)-Dimensional Continuous Models (Cambridge: Cambridge University Press)
[41] Geng X G, Liu W, and Xue B 2019 Results Math. 74 11
[42] Ma W X 2019 Mathematics 7 573
[43] Wazwaz A M 2006 Math. Comput. Model. 43 802
[44] Segata J 2004 Proc. Am. Math. Soc. 132 3559
[45] Liu W H, Liu Y, Zhang Y F, and Shi D D 2019 Mod. Phys. Lett. B 33 1950416
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 100201
[2] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 100201
[3] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 100201
[4] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 100201
[5] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 100201
[6] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 100201
[7] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 100201
[8] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 100201
[9] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 100201
[10] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 100201
[11] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 100201
[12] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 100201
[13] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 100201
[14] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 100201
[15] Ya-Hong Hu, Jun-Chao Chen. Solutions to Nonlocal Integrable Discrete Nonlinear Schr?dinger Equations via Reduction[J]. Chin. Phys. Lett., 2018, 35(11): 100201
Viewed
Full text


Abstract