Chin. Phys. Lett.  2021, Vol. 38 Issue (9): 097401    DOI: 10.1088/0256-307X/38/9/097401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals
Yu Dong1,2,3†, Yangyang Lv1,2,3†, Zuyu Xu1,2,3†, M. Abdel-Hafiez4,5, A. N. Vasiliev4,6, Haipeng Zhu7, Junfeng Wang7, Liang Li7, Wanghao Tian1,2,3, Wei Chen1,2,3, Song Bao1,2,3, Jinghui Wang1,2,3,8, Yueshen Wu8, Yulong Huang9, Shiliang Li9, Jie Yuan9, Kui Jin9, Labao Zhang1, Huabing Wang1, Shun-Li Yu1,2,3*, Jinsheng Wen1,2,3*, Jian-Xin Li1,2,3, Jun Li8,1*, and Peiheng Wu1,10
1School of Electronic Science and Engineering & School of Physics, Nanjing University, Nanjing 210093, China
2National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
3Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
4National University of Science and Technology (MISiS), Moscow 119049, Russia
5Department of Physics and Astronomy, Box 516, Uppsala University, Uppsala SE-75120, Sweden
6Moscow State University, Moscow 119991, Russia
7Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
8ShanghaiTech Laboratory for Topological Physics & School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
9Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
10Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Cite this article:   
Yu Dong, Yangyang Lv, Zuyu Xu et al  2021 Chin. Phys. Lett. 38 097401
Download: PDF(3010KB)   PDF(mobile)(3141KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In iron-based superconductors, the ($0, \pi$) or ($\pi, 0$) nematicity, which describes an electronic anisotropy with a four-fold symmetry breaking, is well established and believed to be important for understanding the superconducting mechanism. However, how exactly such a nematic order observed in the normal state can be related to the superconducting pairing is still elusive. Here, by performing angular-dependent in-plane magnetoresistivity using ultra-thin flakes in the steep superconducting transition region, we unveil a nematic superconducting order along the ($\pi, \pi$) direction in electron-doped BaFe$_{2-x}$Ni$_x$As$_2$ from under-doped to heavily overdoped regimes with $x=0.065$–0.18. It shows superconducting gap maxima along the ($\pi, \pi$) direction rotated by 45$^\circ$ from the nematicity along ($0, \pi$) or ($\pi, 0$) direction observed in the normal state. A similar ($\pi, \pi$)-type nematicity is also observed in the under-doped and optimally doped hole-type Ba$_{1-y}$K$_y$Fe$_2$As$_2$, with $y = 0.2$–0.5. These results suggest that the ($\pi, \pi$) nematic superconducting order is a universal feature that needs to be taken into account in the superconducting pairing mechanism in iron-based superconductors.
Received: 01 August 2021      Express Letter Published: 24 August 2021
PACS:  74.20.Rp (Pairing symmetries (other than s-wave))  
  74.25.Fy  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.70.-b (Superconducting materials other than cuprates)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 61771234, 61727805, 11674157, 11674158, 11774152, 11822405, 61521001, 61571219, and 61501222), the National Key Projects for Research and Development of China (Grant Nos. 2016YFA0300401, 2017YFB0503302, 2017YFA0304002, and 2017YFB0503300), the start-up funding from ShanghaiTech University, Innovative Research Team in University (PCSIRT), the Natural Science Foundation of Shanghai Municipality (Grant No. 20ZR1436100), the Science and Technology Commission of Shanghai Municipality (Grant No. YDZX20203100001438), Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves, Natural Science Foundation of Jiangsu Province (Grant No. BK20180006), and the Fundamental Research Funds for the Central Universities (Grant No. 020414380117).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/9/097401       OR      https://cpl.iphy.ac.cn/Y2021/V38/I9/097401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Dong
Yangyang Lv
Zuyu Xu
M. Abdel-Hafiez
A. N. Vasiliev
Haipeng Zhu
Junfeng Wang
Liang Li
Wanghao Tian
Wei Chen
Song Bao
Jinghui Wang
Yueshen Wu
Yulong Huang
Shiliang Li
Jie Yuan
Kui Jin
Labao Zhang
Huabing Wang
Shun-Li Yu
Jinsheng Wen
Jian-Xin Li
Jun Li
and Peiheng Wu
[1] Paglione J and Greene R L 2010 Nat. Phys. 6 645
[2] Johnston D C 2010 Adv. Phys. 59 803
[3] Dai P, Hu J, and Dagotto E 2012 Nat. Phys. 8 709
[4] Hirschfeld P J, Korshunov M M, and Mazin I I 2011 Rep. Prog. Phys. 74 124508
[5] Chubukov A 2012 Annu. Rev. Condens. Matter Phys. 3 57
[6] Mazin I I 2010 Nature 464 183
[7] Wang F and Lee D H 2011 Science 332 200
[8] Norman M R 2011 Science 332 196
[9] Yu S L and Li J X 2013 Chin. Phys. B 22 087411
[10] Luo H, Lu X, Zhang R, Wang M, Goremychkin E A, Adroja D T, Danilkin S, Deng G, Yamani Z, and Dai P 2013 Phys. Rev. B 88 144516
[11] Prozorov R, Kończykowski M, Tanatar M A, Wen H H, Fernandes R M, and Canfield P C 2019 npj Quantum Mater. 4 34
[12] Zhao J, Rotundu C R, Marty K, Matsuda M, Zhao Y, Setty C, Bourret-Courchesne E, Hu J, and Birgeneau R J 2013 Phys. Rev. Lett. 110 147003
[13] Cai Y, Xie T, Yang H, Wu D, Huang J, Hong W, Cao L, Liu C, Li C, Xu Y, Gao Q, Miao T, Liu G, Li S, Huang L, Luo H, Xu Z, Gao H, Zhao L, and Zhou X J 2021 Chin. Phys. Lett. 38 057404
[14] Liang Y, Wu X X, and Hu J P 2015 Chin. Phys. Lett. 32 117402
[15] Liu S, Yuan J, Ma S, Lu Z, Zhang Y, Ma M, Zhang H, Jin K, Yu L, Zhou F, Dong X, and Zhao Z 2021 Chin. Phys. Lett. 38 087401
[16] Chuang T M, Allan M P, Lee J, Xie Y, Ni N, Bud'ko S L, Boebinger G S, Canfield P C, and Davis J C 2010 Science 327 181
[17] Chu J H, Analytis J G, De Greve K, McMahon P L, Islam Z, Yamamoto Y, and Fisher I R 2010 Science 329 824
[18] Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L L, Jia J F, Hung H H, Wu C J, Ma X C, Chen X, and Xue Q K 2011 Science 332 1410
[19] Fisher I R, Degiorgi L, and Shen Z X 2011 Rep. Prog. Phys. 74 124506
[20] Chu J H, Kuo H H, Analytis J G, and Fisher I R 2012 Science 337 710
[21] Kuo H H, Chu J H, Palmstrom J C, Kivelson S A, and Fisher I R 2016 Science 352 958
[22] Liu Z, Gu Y, Zhang W, Gong D, Zhang W, Xie T, Lu X, Ma X, Zhang X, Zhang R, Zhu J, Ren C, Shan L, Qiu X, Dai P, Yang Y F, Luo H, and Li S 2016 Phys. Rev. Lett. 117 157002
[23] Tanatar M A, Bohmer A E, Timmons E I, Schutt M, Drachuck G, Taufour V, Kothapalli K, Kreyssig A, Bud'ko S L, Canfield P C, Fernandes R M, and Prozorov R 2016 Phys. Rev. Lett. 117 127001
[24] Gastiasoro M N, Paul I, Wang Y, Hirschfeld P J, and Andersen B M 2014 Phys. Rev. Lett. 113 127001
[25] Ying J J, Wang X F, Wu T, Xiang Z J, Liu R H, Yan Y J, Wang A F, Zhang M, Ye G J, Cheng P, Hu J P, and Chen X H 2011 Phys. Rev. Lett. 107 067001
[26] Allan M P, Chuang T M, Massee F, Xie Y, Ni N, Bud'ko S L, Boebinger G S, Wang Q, Dessau D S, Canfield P C, Golden M S, and Davis J C 2013 Nat. Phys. 9 220
[27] Sprau P O, Kostin A, Kreisel A, Bohmer A E, Taufour V, Canfield P C, Mukherjee S, Hirschfeld P J, Andersen B M, and Davis J C S 2017 Science 357 75
[28] Hanaguri T, Iwaya K, Kohsaka Y, Machida T, Watashige T, Kasahara S, Shibauchi T, and Matsuda Y 2018 Sci. Adv. 4 eaar6419
[29] Singh U R, White S C, Schmaus S, Tsurkan V, Loidl A, Deisenhofer J, and Wahl P 2015 Sci. Adv. 1 e1500206
[30] Fu M, Torchetti D A, Imai T, Ning F L, Yan J Q, and Sefat A S 2012 Phys. Rev. Lett. 109 247001
[31] Zhou R, Li Z, Yang J, Sun D L, Lin C T, and Zheng G Q 2013 Nat. Commun. 4 2265
[32] Baek S H, Efremov D V, Ok J M, Kim J S, van den Brink J, and Büchner B 2015 Nat. Mater. 14 210
[33] Baek S H, Bhoi D, Nam W, Lee B, Efremov D V, Büchner B, and Kim K H 2018 Nat. Commun. 9 2139
[34] Man H R, Guo J G, Zhang R, Schonemann R, Yin Z P, Fu M X, Stone M B, Huang Q Z, Song Y, Wang W Y, Singh D J, Lochner F, Hickel T, Eremin I, Harriger L, Lynn J W, Broholm C, Balicas L, Si Q M, and Dai P C 2017 npj Quantum Mater. 2 14
[35] Lu X Y, Park J T, Zhang R, Luo H Q, Nevidomskyy A H, Si Q M, and Dai P C 2014 Science 345 657
[36] Wang Q S, Shen Y, Pan B Y, Hao Y Q, Ma M W, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X J, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H B, and Zhao J 2016 Nat. Mater. 15 159
[37] Wang W Y, Song Y, Cao C D, Tseng K F, Keller T, Li Y, Harriger L W, Tian W, Chi S X, Yu R, Nevidomskyy A H, and Dai P C 2018 Nat. Commun. 9 3128
[38] Dai P 2015 Rev. Mod. Phys. 87 855
[39] Yi M, Lu D H, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R, and Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878
[40] Yi M, Lu D H, Yu R, Riggs S C, Chu J H, Lv B, Liu Z K, Lu M, Cui Y T, Hashimoto M, Mo S K, Hussain Z, Chu C W, Fisher I R, Si Q, and Shen Z X 2013 Phys. Rev. Lett. 110 067003
[41] Liu D, Li C, Huang J, Lei B, Wang L, Wu X, Shen B, Gao Q, Zhang Y, Liu X, Hu Y, Xu Y, Liang A, Liu J, Ai P, Zhao L, He S, Yu L, Liu G, Mao Y, Dong X, Jia X, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Shi Y, Hu J, Xiang T, Chen X, Xu Z, Chen C, and Zhou X J 2018 Phys. Rev. X 8 031033
[42] Hashimoto T, Ota Y, Yamamoto H Q, Suzuki Y, Shimojima T, Watanabe S, Chen C, Kasahara S, Matsuda Y, Shibauchi T, Okazaki K, and Shin S 2018 Nat. Commun. 9 282
[43] Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, and Takahashi T 2014 Phys. Rev. Lett. 113 237001
[44] Kretzschmar F, Bohm T, Karahasanovic U, Muschler B, Baum A, Jost D, Schmalian J, Caprara S, Grilli M, Di Castro C, Analytis J G, Chu J H, Fisher I R, and Hackl R 2016 Nat. Phys. 12 560
[45] Gallais Y, Paul I, Chauvière L, and Schmalian J 2016 Phys. Rev. Lett. 116 017001
[46] Gallais Y, Fernandes R M, Paul I, Chauvière L, Yang Y X, Méasson M A, Cazayous M, Sacuto A, Colson D, and Forget A 2013 Phys. Rev. Lett. 111 267001
[47] Massat P, Quan Y, Grasset R, Méasson M A, Cazayous M, Sacuto A, Karlsson S, Strobel P, Toulemonde P, Yin Z, and Gallais Y 2018 Phys. Rev. Lett. 121 077001
[48] Ren X, Duan L, Hu Y, Li J, Zhang R, Luo H, Dai P, and Li Y 2015 Phys. Rev. Lett. 115 197002
[49] Fernandes R M, Chubukov A V, and Schmalian J 2014 Nat. Phys. 10 97
[50] Kasahara S, Shi H J, Hashimoto K, Tonegawa S, Mizukami Y, Shibauchi T, Sugimoto K, Fukuda T, Terashima T, Nevidomskyy A H, and Matsuda Y 2012 Nature 486 382
[51] Davis J C and Hirschfeld P J 2014 Nat. Phys. 10 184
[52] Yu R, Zhu J X, and Si Q M 2018 Phys. Rev. Lett. 121 227003
[53] Benfatto L, Valenzuela B, and Fanfarillo L 2018 npj Quantum Mater. 3 56
[54] Fernandes R M and Millis A J 2013 Phys. Rev. Lett. 111 127001
[55] Kang J, Chubukov A V, and Fernandes R M 2018 Phys. Rev. B 98 064508
[56] Frandsen B A, Taddei K M, Yi M, Frano A, Guguchia Z, Yu R, Si Q M, Bugaris D E, Stadel R, Osborn R, Rosenkranz S, Chmaissem O, and Birgeneau R J 2017 Phys. Rev. Lett. 119 187001
[57] Fu L 2016 Nat. Phys. 12 822
[58] Liu M, Harriger L W, Luo H, Wang M, Ewings R A, Guidi T, Park H, Haule K, Kotliar G, Hayden S M, and Dai P 2012 Nat. Phys. 8 376
[59] Böhmer A E, Hardy F, Wang L, Wolf T, Schweiss P, and Meingast C 2015 Nat. Commun. 6 7911
[60] Chubukov A V, Khodas M, and Fernandes R M 2016 Phys. Rev. X 6 041045
[61] Mazin I I, Singh D J, Johannes M D, and Du M H 2008 Phys. Rev. Lett. 101 057003
[62] Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, and Aoki H 2008 Phys. Rev. Lett. 101 087004
[63] Graser S, Maier T A, Hirschfeld P J, and Scalapino D J 2009 New J. Phys. 11 025016
[64] Yao Z J, Li J X, and Wang Z D 2009 New J. Phys. 11 025009
[65] Onari S and Kontani H 2012 Phys. Rev. Lett. 109 137001
[66] Maiwald J, Mazin I I, and Gegenwart P 2018 Phys. Rev. X 8 011011
[67] Boettcher I and Herbut I F 2018 Phys. Rev. Lett. 120 057002
[68] Li J, Pereira P J, Yuan J, Lv Y Y, Jiang M P, Lu D C, Lin Z Q, Liu Y J, Wang J F, Li L, Ke X X, Van Tendeloo G, Li M Y, Feng H L, Hatano T, Wang H B, Wu P H, Yamaura K, Takayama-Muromachi E, Vanacken J, Chibotaru L F, and Moshchalkov V V 2017 Nat. Commun. 8 1880
[69] Liu X, Tao R, Ren M Q, Chen W, Yao Q, Wolf T, Yan Y J, Zhang T, and Feng D L 2019 Nat. Commun. 10 1039
[70] Ishida K, Tsujii M, Hosoi S, Mizukami Y, Ishida S, Iyo A, Eisaki H, Wolf T, Grube K, Loeneysen H V, Fernandes R M, and Shibauchi T 2020 Proc. Natl. Acad. Sci. USA 117 6424
[71] Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M, Qian B, Vehstedt E K, Yang J, Pham H M, Spinu L, and Mao Z Q 2009 Phys. Rev. Lett. 102 247001
[72] Li S, de la C C, Huang Q, Chen Y, Lynn J W, Hu J, Huang Y L, Hsu F C, Yeh K W, Wu M K, and Dai P 2009 Phys. Rev. B 79 054503
[73] Okazaki K, Ota Y, Kotani Y, Malaeb W, Ishida Y, Shimojima T, Kiss T, Watanabe S, Chen C T, Kihou K, Lee C H, Iyo A, Eisaki H, Saito T, Fukazawa H, Kohori Y, Hashimoto K, Shibauchi T, Matsuda Y, Ikeda H, Miyahara H, Arita R, Chainani A, and Shin S 2012 Science 337 1314
[74] Sato T, Nakayama K, Sekiba Y, Richard P, Xu Y M, Souma S, Takahashi T, Chen G F, Luo J L, Wang N L, and Ding H 2009 Phys. Rev. Lett. 103 047002
[75] Yoshida T, Nishi I, Fujimori A, Yi M, Moore R G, Lu D H, Shen Z X, Kihou K, Shirage P M, Kito H, Lee C H, Iyo A, Eisaki H, and Harima H 2011 J. Phys. Chem. Solids 72 465
[76] Abdel-Hafiez M, Zhang Y, He Z, Zhao J, Bergmann C, Krellner C, Duan C G, Lu X, Luo H, Dai P, and Chen X J 2015 Phys. Rev. B 91 024510
[77] Li J, Yuan J, Yuan Y H, Ge J Y, Li M Y, Feng H L, Pereira P J, Ishii A, Hatano T, Silhanek A V, Chibotaru L F, Vanacken J, Yamaura K, Wang H B, Takayama-Muromachi E, and Moshchalkov V V 2013 Appl. Phys. Lett. 103 062603
[78] Ni N, Thaler A, Yan J Q, Kracher A, Colombier E, Bud'ko S L, Canfield P C, and Hannahs S T 2010 Phys. Rev. B 82 024519
[79] Canfield P C, Bud'ko S L, Ni N, Yan J Q, and Kracher A 2009 Phys. Rev. B 80 060501
[80]Mao Z Q, Maeno Y, NishiZaki S, Akima T, and Ishiguro T 1985 Sov. Phys.-JETP 62 800
[81] Agterberg D F 1998 Phys. Rev. Lett. 80 5184
[82] Mao Z Q, Maeno Y, NishiZaki S, Akima T, and Ishiguro T 2000 Phys. Rev. Lett. 84 991
[83] Koike Y, Takabayashi T, Noji T, Nishizaki T, and Kobayashi N 1996 Phys. Rev. B 54 R776
[84] Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L, and Wang N L 2009 Nature 457 565
[85] Wu J, Bollinger A T, He X, and Bozovic I 2017 Nature 547 432
[86] Zhao J, Adroja D T, Yao D X, Bewley R, Li S, Wang X F, Wu G, Chen X H, Hu J, and Dai P 2009 Nat. Phys. 5 555
[87] Onari S and Kontani H 2019 Phys. Rev. B 100 020507
[88] Wang Y, Hu W, Yu R, and Si Q 2019 Phys. Rev. B 100 100502
[89] Borisov V, Fernandes R M, and Valentí R 2019 Phys. Rev. Lett. 123 146402
[90] Xu Z, Wen J, Xu G, Chi S, Ku W, Gu G, and Tranquada J M 2011 Phys. Rev. B 84 052506
[91] Gretarsson H, Lupascu A, Kim J, Casa D, Gog T, Wu W, Julian S R, Xu Z J, Wen J S, Gu G D, Yuan R H, Chen Z G, Wang N L, Khim S, Kim K H, Ishikado M, Jarrige I, Shamoto S, Chu J H, Fisher I R, and Kim Y J 2011 Phys. Rev. B 84 100509
[92] Wang Z T, Hu W J, and Nevidomskyy A H 2016 Phys. Rev. Lett. 116 247203
[93] Ding X, Pan Y, Yang H, and Wen H H 2014 Phys. Rev. B 89 224515
[94] Glamazda A, Lemmens P, Ok J M, Kim J S, and Choi K Y 2019 Phys. Rev. B 99 075142
[95] Xu Z, Dai G, Li Y, Yin Z, Rong Y, Tian L, Liu P, Wang H, Xing L, Wei Y, Kajimoto R, Ikeuchi K, Abernathy D L, Wang X, Jin C, Lu X, Tan G, and Dai P 2020 npj Quantum Mater. 5 11
Viewed
Full text


Abstract