CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Simultaneous Optimization of Power Factor and Thermal Conductivity towards High-Performance InSb-Based Thermoelectric Materials |
Wang Li , Tian Xu , Zheng Ma , Abubakar-Yakubu Haruna, Qing-Hui Jiang , Yu-Bo Luo*, and Jun-You Yang* |
State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China |
|
Cite this article: |
Wang Li , Tian Xu , Zheng Ma et al 2021 Chin. Phys. Lett. 38 097201 |
|
|
Abstract Thermoelectric performance of InSb is restricted by its low Seebeck coefficient and high thermal conductivity. Here, CuCl is employed to optimize simultaneously the electrical and thermal transport properties of InSb. The substitution of Cl for Sb results in enhanced electron effective mass, leading to high Seebeck coefficient of $-159.9$ µV/K and high power factor of 31.5 µW$\cdot$cm$^{-1}$$\cdot$K$^{-2}$ at 733 K for InSb + 5 wt% CuCl sample. In addition, CuCl doping creates hierarchical architectures composed of Cu$_{9}$In$_{4}$, Sb, Cu$_{2}$Sb in InSb, leading to a strengthened phonon scattering in a wide wavelength (i.e., nano to meso scale), thus a low lattice thermal conductivity of 2.97 W$\cdot$m$^{-1}$$\cdot$K$^{-1}$ at 733 K in InSb + 5 wt% CuCl. As a result, a maximum $ZT$ of 0.77 at 733 K has been achieved for the InSb + 5 wt% CuCl sample, increasing by $\sim $250% compared to pristine InSb.
|
|
Received: 01 August 2021
Published: 02 September 2021
|
|
PACS: |
72.20.Pa
|
(Thermoelectric and thermomagnetic effects)
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
66.70.Df
|
(Metals, alloys, and semiconductors)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 52002137, 51772109, 51872102, and 51802070), the Fundamental Research Funds for the Central Universities (Grant Nos. 2021XXJS008 and 2018KFYXKJC002), and Graduates' Innovation Fund of Huazhong University of Science and Technology (Grant No. 2020yjsCXCY022). |
|
|
[1] | Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 |
[2] | Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, and Kanatzidis M G 2012 Nature 489 414 |
[3] | Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, and Kanatzidis M G 2014 Nature 508 373 |
[4] | Zhou K, Zhang T, Liu B, and Yao Y J 2020 Chin. Phys. Lett. 37 017102 |
[5] | Wang S F, Zhang Z G, Wang B T, Zhang J R, and Wang F W 2021 Chin. Phys. Lett. 38 046301 |
[6] | Yan S, Wang Y, Gao Z, Long Y, and Ren J 2021 Chin. Phys. Lett. 38 027301 |
[7] | Zhu G P, Zhao C W, Wang X W, and Wang J 2021 Chin. Phys. Lett. 38 024401 |
[8] | Zhou L Y, Zheng Q, Bao L H, and Liang W J 2020 Chin. Phys. Lett. 37 017301 |
[9] | Gao L, Liu Q, Yang J, Wu Y, Liu Z, Qin S, Ye X, Jin S, Li G, Zhao H, Long Y 2020 Chin. Phys. Lett. 37 066202 |
[10] | Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X, Li J, He J, and Zhao L 2021 Science 373 556 |
[11] | Feng B, Li G Q, Hu X M, Liu P H, Li R S, Zhang Y L, Li Y W, He Z, and Fan X A 2020 Chin. Phys. Lett. 37 037201 |
[12] | He W, Qin B, and Zhao L D 2020 Chin. Phys. Lett. 37 087104 |
[13] | Ma Z, Xu T, Li W, Cheng Y, Li J, Zhang D, Jiang Q, Luo Y, and Yang J 2021 Adv. Funct. Mater. 31 2103197 |
[14] | Luo Y, Hao S, Cai S, Slade T J, Luo Z Z, Dravid V P, Wolverton C, Yan Q, and Kanatzidis M G 2020 J. Am. Chem. Soc. 142 15187 |
[15] | Cai S, Hao S, Luo Y, Su X, Luo Z Z, Hu X, Wolverton C, Dravid V P, and Kanatzidis M G 2020 Chem. Mater. 32 3561 |
[16] | Luo Y, Cai S, Hao S, Pielnhofer F, Hadar I, Luo Z Z, Xu J, Wolverton C, Dravid V P, Pfitzner A, Yan Q, and Kanatzidis M G 2020 Joule 4 159 |
[17] | Bowers R, Ure R W, Bauerle J E, and Cornish A J 1959 J. Appl. Phys. 30 930 |
[18] | Yamaguchi S, Matsumoto T, Yamazaki J, Kaiwa N, and Yamamoto A 2005 Appl. Phys. Lett. 87 201902 |
[19] | Su X L, Tang X F, and Han L 2010 Acta Phys. Sin. 59 2860 (in Chinese) |
[20] | Zhang Q, Xiong Z, Jiang J, Li W, Xu G, Bai S, Cui P, and Chen L 2011 J. Mater. Chem. 21 12398 |
[21] | Mao J, Niedziela J L, Wang Y, Xia Y, Ge B, Liu Z, Zhou J, Ren Z, Liu W, Chan M K Y, Chen G, Delaire O, Zhang Q, and Ren Z 2018 Nano Energy 48 189 |
[22] | Cheng Y, Yang J, Jiang Q, He D, He J, Luo Y, Zhang D, Zhou Z, Ren Y, and Xin J 2017 J. Mater. Chem. A 5 5163 |
[23] | Xin J, Jiang Q, Wen Y, Li S, Zhang J, Basit A, Shu L, Li X, and Yang J 2018 J. Mater. Chem. A 6 17049 |
[24] | Luo Y, Yang J, Jiang Q, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y, and He X 2016 Adv. Energy Mater. 6 1600007 |
[25] | Zhao L D, Lo S H, He J, Li H, Biswas K, Androulakis J, Wu C I, Hogan T P, Chung D Y, Dravid V P, and Kanatzidis M G 2011 J. Am. Chem. Soc. 133 20476 |
[26] | Tan G, Stoumpos C C, Wang S, Bailey T P, Zhao L D, Uher C, and Kanatzidis M G 2017 Adv. Energy Mater. 7 1700099 |
[27] | Suwardi A, Bash D, Ng H K, Gomez J R, Repaka D V M, Kumar P, and Hippalgaonkar K 2019 J. Mater. Chem. A 7 23762 |
[28] | Bouarissa N and Aourag H 1999 Infrared Phys. & Technol. 40 343 |
[29] | Hee K J, Jae K M, Oh S, Rhyee J S, Park S D, and Ahn D 2015 Dalton Trans. 44 3185 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|