Chin. Phys. Lett.  2021, Vol. 38 Issue (8): 087401    DOI: 10.1088/0256-307X/38/8/087401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems
Shaobo Liu1,2, Jie Yuan1,3,4, Sheng Ma1,2, Zouyouwei Lu1,2, Yuhang Zhang1,2, Mingwei Ma1,4, Hua Zhang1,2, Kui Jin1,2,3,4, Li Yu1,2,4, Fang Zhou1,2,4*, Xiaoli Dong1,2,3,4*, and Zhongxian Zhao1,2,3,4
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Key Laboratory for Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
4Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Shaobo Liu, Jie Yuan, Sheng Ma et al  2021 Chin. Phys. Lett. 38 087401
Download: PDF(2833KB)   PDF(mobile)(3593KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The angular-dependent magnetoresistance (AMR) of the $ab$ plane is measured on the single crystals of iron-chalcogenide FeSe$_{1-x}$S$_{x}$ ($x = 0$, 0.07, 0.13 and 1) and FeSe$_{1-y}$Te$_{y}$ ($y = 0.06$, 0.61 and 1) at various temperatures under fields up to 9 T. A pronounced twofold-anisotropic carrier-scattering effect is identified by AMR, and attributed to a magnetic-field-induced spin nematicity that emerges from the tetragonal normal-state regime below a characteristic temperature $T_{\rm sn}$. This magnetically polarized spin nematicity is found to be ubiquitous in the isoelectronic FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ systems, no matter whether the sample shows an electronic nematic order at $T_{\rm s} \lesssim T_{\rm sn}$, or an antiferromagnetic order at $T_{\rm N} < T_{\rm sn}$, or neither order. Importantly, we find that the induced spin nematicity shows a very different response to sulfur substitution from the spontaneous electronic nematicity: The spin-nematic $T_{\rm sn}$ is not suppressed but even enhanced by the substitution, whereas the electronic-nematic $T_{\rm s}$ is rapidly suppressed, in the FeSe$_{1-x}$S$_{x}$ system. Furthermore, we find that the superconductivity is significantly suppressed with the enhancement of the induced spin nematicity in both FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ samples.
Received: 29 April 2021      Editors' Suggestion Published: 02 August 2021
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.25.F- (Transport properties)  
  83.80.Xz (Liquid crystals: nematic, cholesteric, smectic, discotic, etc.)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300300 and 2017YFA0303003), the National Natural Science Foundation of China (Grant Nos. 12061131005, 11834016, and 11888101), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB25000000), and the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-SLH001).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/8/087401       OR      https://cpl.iphy.ac.cn/Y2021/V38/I8/087401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shaobo Liu
Jie Yuan
Sheng Ma
Zouyouwei Lu
Yuhang Zhang
Mingwei Ma
Hua Zhang
Kui Jin
Li Yu
Fang Zhou
Xiaoli Dong
and Zhongxian Zhao
[1] Zhao J, Huang Q, de la C C, Li S L, Lynn J W, Chen Y, Green M A, Chen G F, Li G, Li Z, Luo J L, Wang N L, and Dai P C 2008 Nat. Mater. 7 953
[2] Liu T J, Hu J, Qian B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J, Prokeš K, Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Qiu Y, Thampy V, Savici A T, Rodriguez J A, and Broholm C 2010 Nat. Mater. 9 718
[3] Lumsden M D, Christianson A D, Goremychkin E A, Nagler S E, Mook H A, Stone M B, Abernathy D L, Guidi T, MacDougall G J, de la C C, Sefat A S, McGuire M A, Sales B C, and Mandrus D 2010 Nat. Phys. 6 182
[4] Kasahara S, Shi H J, Hashimoto K, Tonegawa S, Mizukami Y, Shibauchi T, Sugimoto K, Fukuda T, Terashima T, Nevidomskyy A H, and Matsuda Y 2012 Nature 486 382
[5] Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17
[6] Ma F, Ji W, Hu J, Lu Z Y, and Xiang T 2009 Phys. Rev. Lett. 102 177003
[7] Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M, Qian B, Vehstedt E K, Yang J, Pham H M, Spinu L, and Mao Z Q 2009 Phys. Rev. Lett. 102 247001
[8] Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, and Valentí R 2015 Nat. Phys. 11 953
[9] Fang M H, Pham H M, Qian B, Liu T J, Vehstedt E K, Liu Y, Spinu L, and Mao Z Q 2008 Phys. Rev. B 78 224503
[10] Yeh K W, Huang T W, Huang Y L, Chen T K, Hsu F C, M W P, Lee Y C, Chu Y Y, Chen C L, Luo J Y, Yan D C, and Wu M K 2008 Europhys. Lett. 84 37002
[11] Li S L, de la Cruz C, Huang Q, Chen Y, Lynn J W, Hu J P, Huang Y L, Hsu F C, Yeh K W, Wu M K, and Dai P C 2009 Phys. Rev. B 79 054503
[12] Zaliznyak I A, Xu Z J, Wen J S, Tranquada J M, Gu G D, Solovyov V, Glazkov V N, Zheludev A I, Garlea V O, and Stone M B 2012 Phys. Rev. B 85 085105
[13] Man H, Guo J G, Zhang R, Schönemann R, Yin Z P, Fu M X, Stone M B, Huang Q Z, Song Y, Wang W Y, Singh D J, Lochner F, Hickel T, Eremin I, Harriger L, Lynn J W, Broholm C, Balicas L, Si Q M, and Dai P C 2017 npj Quantum Mater. 2 14
[14] Lai X F, Zhang H, Wang Y Q, Wang X, Zhang X, Lin J H, and Huang F Q 2015 J. Am. Chem. Soc. 137 10148
[15] Coldea A I and Watson M D 2018 Annu. Rev. Condens. Matter Phys. 9 125
[16] Wang Q S, Shen Y, Pan B Y, Zhang X W, Ikeuchi K, Iida K, Christianson A D, Walker H C, Adroja D T, Abdel-Hafiez M, Chen X J, Chareev D A, Vasiliev A N, and Zhao J 2016 Nat. Commun. 7 12182
[17] Wang Q S, Shen Y, Pan B Y, Hao Y Q, Ma M M, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X J, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H B, and Zhao J 2016 Nat. Mater. 15 159
[18] Rahn M C, Ewings R A, Sedlmaier S J, Clarke S J, and Boothroyd A T 2015 Phys. Rev. B 91 180501(R)
[19] Chen T, Chen Y Z, Kreisel A, Lu X Y, Schneidewind A, Qiu Y M, Park J T, Perring T G, Stewart J R, Cao H B, Zhang R, Li Y, Rong Y, Wei Y, Andersen B M, Hirschfeld P J, Broholm C, and Dai P C 2019 Nat. Mater. 18 709
[20] Yuan D N, Yuan J, Huang Y L, Ni S L, Feng Z P, Zhou H X, Mao Y Y, Jin K, Zhang G M, Dong X L, Zhou F, and Zhao Z X 2016 Phys. Rev. B 94 060506(R)
[21] He M Q, Wang L R, Hardy F, Xu L P, Wolf T, Adelmann P, and Meingast C 2018 Phys. Rev. B 97 104107
[22] Li J, Lei B, Zhao D, Nie L P, Song D W, Zheng L X, Li S J, Kang B L, Luo X G, Wu T, and Chen X H 2020 Phys. Rev. X 10 011034
[23] Rhodes L C, Böker J, Müller M A, Eschrig M, and Eremin I M 2021 npj Quantum Mater. 6 45
[24] Ma M W, Bourges P, Sidis Y, Xu Y, Li S Y, Hu B Y, Li J R, Wang F, and Li Y 2017 Phys. Rev. X 7 021025
[25] Liu S B, Yuan J, Huh S, Ryu H, Ma M W, Hu W, Li D, Ma S, Ni S L, Shen P P, Jin K, Yu L, Kim C Y, Zhou F, Dong X L, and Zhao Z X 2020 arXiv:2009.13286 [cond-mat.supr-con]
[26] Liu S B, Ma S, Wang Z S, Hu W, Li Z A, Liang Q M, Wang H, Zhang Y H, W L Z Y, Yuan J, Jin K, Li J Q, Pi L, Yu L, Zhou F, Dong X L, and Zhao Z X 2021 Chin. Phys. Lett. 38 057401
[27] Chen G F, Li Z, Dong J, Li G, Hu W Z, Zhang X D, Song X H, Zheng P, Wang N L, and Luo J L 2008 Phys. Rev. B 78 224512
[28] Wang X F, Wu T, Wu G, Liu R H, Chen H, Xie Y L, and Chen X H 2009 New J. Phys. 11 045003
[29] Lin H, Li Y, Deng Q, Xing J, Liu J, Zhu X, Yang H, and Wen H H 2016 Phys. Rev. B 93 144505
[30] Dai P C 2015 Rev. Mod. Phys. 87 855
[31] Xu Z J, Wen J S, Xu G Y, Chi S X, Ku W, Gu G, and Tranquada J M 2011 Phys. Rev. B 84 052506
[32] Johnson P D, Yang H B, Rameau J D, Gu G D, Pan Z H, Valla T, Weinert M, and Fedorov A V 2015 Phys. Rev. Lett. 114 167001
[33] Sushkov O P, Oitmaa J, and Zheng W H 2001 Phys. Rev. B 63 104420
[34] Xu C K and Sachdev S 2008 Nat. Phys. 4 898
[35] Fang C, Yao H, Tsai W F, Hu J P, and Kivelson S A 2008 Phys. Rev. B 77 224509
[36] Jiang H C, Krüger F, Moore J E, Sheng D N, Zaanen J, and Weng Z Y 2009 Phys. Rev. B 79 174409
[37] Cao H Y, Chen S Y, Xiang H J, and Gong X G 2015 Phys. Rev. B 91 020504(R)
[38] Yu R and Si Q 2015 Phys. Rev. Lett. 115 116401
[39] Wang F, Kivelson S A, and Lee D H 2015 Nat. Phys. 11 959
[40] Sato Y, Kasahara S, Taniguchi T, Xing X, Kasahara Y, Tokiwa Y, Yamakawa Y, Kontani H, Shibauchi T, and Matsuda Y 2018 Proc. Natl. Acad. Sci. USA 115 1227
[41] Ye Z R, Zhang Y, Chen F, Xu M, Jiang J, Niu X H, Wen C H P, Xing L Y, Wang X C, Jin C Q, Xie B P, and Feng D L 2014 Phys. Rev. X 4 031041
[42] Miao J, Niu X H, Xu D F, Yao Q, Chen Q Y, Ying T P, Li S Y, Fang Y F, Zhang J C, Ideta S, Tanaka K, Xie B P, Feng D L, and Chen F 2017 Phys. Rev. B 95 205127
[43] Pan B, Shen Y, Hu D, Feng Y, Park J T, Christianson A D, Wang Q, Hao Y, Wo H, Yin Z, Maier T A, and Zhao J 2017 Nat. Commun. 8 123
[44] Ma M W, Wang L C, Bourges P, Sidis Y, Danilkin S, and Li Y 2017 Phys. Rev. B 95 100504(R)
[45] Yi M, Wang M, Kemper A F, Mo S K, Hussain Z, Bourret-Courchesne E, Lanzara A, Hashimoto M, Lu D H, Shen Z X, and Birgeneau R J 2015 Phys. Rev. Lett. 115 256403
[46] Ni S L, Sun J P, Liu S B, Yuan J, Yu L, Ma M W, Zhang L, Pi L, Zheng P, Shen P P, Li D, Shi D E, Li G B, Sun J L, Zhang G M, Jin K, Cheng J G, Zhou F, Dong X L, and Zhao Z X 2019 arXiv:1912.12614 [cond-mat.supr-con]
[47] Dong X L, Zhou F, and Zhao Z X 2020 Front. Phys. 8 586182
Viewed
Full text


Abstract