Chin. Phys. Lett.  2021, Vol. 38 Issue (8): 087201    DOI: 10.1088/0256-307X/38/8/087201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Proximity Effect of Epitaxial Iron Phthalocyanine Molecules on High-Quality Graphene Devices
Haiyang Pan1†, Xiaobo Wang2†, Qiaoming Wang1, Xiaohua Wu1, Chang Liu1, Nian Lin2*, and Yue Zhao1,3*
1Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
2Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
3Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Cite this article:   
Haiyang Pan, Xiaobo Wang, Qiaoming Wang et al  2021 Chin. Phys. Lett. 38 087201
Download: PDF(3080KB)   PDF(mobile)(5543KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Depositing magnetic insulators on graphene has been a promising route to introduce magnetism via exchange proximity interaction in graphene for future spintronics applications. Molecule-based magnets may offer unique opportunities because of their synthesis versatility. Here, we investigate the magnetic proximity effect of epitaxial iron phthalocyanine (FePc) molecules on high-quality monolayer and bilayer graphene devices on hexagonal boron nitride substrates by probing the local and nonlocal transport. Although the FePc molecules introduce large hole doping effects combined with mobility degradation, the magnetic proximity gives rise to a canted antiferromagnetic state under a magnetic field in the monolayer graphene. On bilayer graphene and FePc heterostructure devices, the nonlocal transport reveals a pronounced Zeeman spin-Hall effect. Further analysis of the scattering mechanism in the bilayer shows a dominated long-range scattering. Our findings in graphene/organic magnetic insulator heterostructure provide a new insight for use of molecule-based magnets in two-dimensional spintronic devices.
Received: 13 May 2021      Editors' Suggestion Published: 02 August 2021
PACS:  72.25.-b (Spin polarized transport)  
  72.25.Mk (Spin transport through interfaces)  
  73.43.Qt (Magnetoresistance)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11674150), the Key-Area Research and Development Program of Guangdong Province (Grant No. 2019B010931001), the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06D348), the SUSTech CRF, and the Hong Kong RGC (Grant Nos. 16300617 and C6012-17E).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/8/087201       OR      https://cpl.iphy.ac.cn/Y2021/V38/I8/087201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haiyang Pan
Xiaobo Wang
Qiaoming Wang
Xiaohua Wu
Chang Liu
Nian Lin
and Yue Zhao
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, and Firsov A A 2005 Nature 438 197
[2] Zhang Y, Tan Y W, Stormer H L, and Kim P 2005 Nature 438 201
[3] Tombros N, Jozsa C, Popinciuc M, Jonkman H T, and van Wees B J 2007 Nature 448 571
[4] Gmitra M and Fabian J 2017 Phys. Rev. Lett. 119 146401
[5] Wang Z, Tang C, Sachs R, Barlas Y, and Shi J 2015 Phys. Rev. Lett. 114 016603
[6] Ding J, Qiao Z, Feng W, Yao Y, and Niu Q 2011 Phys. Rev. B 84 195444
[7] Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J, and Niu Q 2010 Phys. Rev. B 82 161414
[8] Qiao Z, Jiang H, Li X, Yao Y, and Niu Q 2012 Phys. Rev. B 85 115439
[9] Candini A, Klyatskaya S, Ruben M, Wernsdorfer W, and Affronte M 2011 Nano Lett. 11 2634
[10] Jin Y J L, Lin L, and Zhu J J 2020 Chin. Phys. Lett. 37 087501
[11] McCreary K M, Swartz A G, Han W, Fabian J, and Kawakami R K 2012 Phys. Rev. Lett. 109 186604
[12] Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, and Ishigami M 2008 Nat. Phys. 4 377
[13] Cai C Y and Chen J H 2018 Chin. Phys. B 27 67304
[14] Qin Y, Wang S, Wang R, Bu H, Wang X, Wang X, Song F, Wang B, and Wang G 2016 Appl. Phys. Lett. 108 203106
[15] Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J S, and Chen C T 2016 Nat. Mater. 15 711
[16] Wu Y F, Song H D, Zhang L, Yang X, Ren Z, Liu D, Wu H C, Wu J, Li J G, Jia Z, Yan B, Wu X, Duan C G, Han G, Liao Z M, and Yu D 2017 Phys. Rev. B 95 195426
[17] Tang C, Zhang Z, Lai S, Tan Q, and Gao W B 2020 Adv. Mater. 32 1908498
[18] Wu Y, Cui Q, Zhu M, Liu X, Wang Y, Zhang J, Zheng X, Shen J, Cui P, Yang H, and Wang S 2021 ACS Appl. Mater. & Interfaces 13 10656
[19] Gredig T, Colesniuc C N, Crooker S A, and Schuller I K 2012 Phys. Rev. B 86 014409
[20] Avvisati G, Cardoso C, Varsano D, Ferretti A, Gargiani P, and Betti M G 2018 Nano Lett. 18 2268
[21] Gamou H, Shimose K, Enoki R, Minamitani E, Shiotari A, Kotani Y, Toyoki K, Nakamura T, Sugimoto Y, Kohda M, Nitta J, and Miwa S 2020 Nano Lett. 20 75
[22] de la T B, Švec M, Hapala P, Redondo J, Krejčí O, Lo R, Manna D, Sarmah A, Nachtigallová D, Tuček J, Błoński P, Otyepka M, Zbořil R, Hobza P, and Jelínek P 2018 Nat. Commun. 9 2831
[23] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, and Hone J 2010 Nat. Nanotechnol. 5 722
[24] Zomer P J, Dash S P, Tombros N, and Wees B J V 2011 Appl. Phys. Lett. 99 232104
[25] Hwang E H, Adam S, and Sarma S D 2007 Phys. Rev. Lett. 98 186806
[26] Tan Y W, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang E H, Das S S, Stormer H L, and Kim P 2007 Phys. Rev. Lett. 99 246803
[27] Wehling T O, Yuan S, Lichtenstein A I, Geim A K, and Katsnelson M I 2010 Phys. Rev. Lett. 105 056802
[28] Li C, Komatsu K, Bertrand S, Clavé G, Campidelli S, Filoramo A, Guéron S, and Bouchiat H 2016 Phys. Rev. B 93 045403
[29] Abanin D A, Morozov S V, Ponomarenko L A, Gorbachev R V, Mayorov A S, Katsnelson M I, Watanabe K, Taniguchi T, Novoselov K S, Levitov L S, and Geim A K 2011 Science 332 328
[30] Avsar A, Tan J Y, Taychatanapat T, Balakrishnan J, Koon G K W, Yeo Y, Lahiri J, Carvalho A, Rodin A S, O'Farrell E C T, Eda G, Castro N A H, and Özyilmaz B 2014 Nat. Commun. 5 4875
[31] Wojtaszek M, Vera-Marun I J, Maassen T, and van Wees B J 2013 Phys. Rev. B 87 081402
[32] Ribeiro M, Power S R, Roche S, Hueso L E, and Casanova F 2017 Nat. Commun. 8 2198
[33] Kharitonov M 2012 Phys. Rev. B 85 155439
[34] Kharitonov M 2012 Phys. Rev. B 86 075450
[35] Nomura K and MacDonald A H 2006 Phys. Rev. Lett. 96 256602
[36] Young A F, Sanchez-Yamagishi J D, Hunt B, Choi S H, Watanabe K, Taniguchi T, Ashoori R C, and Jarillo-Herrero P 2014 Nature 505 528
[37] Li Y, Amado M, Hyart T, Mazur G P, Risinggård V, Wagner T, McKenzie-Sell L, Kimbell G, Wunderlich J, Linder J, and Robinson J W A 2020 Phys. Rev. B 101 241405
[38] McCann E 2006 Phys. Rev. B 74 161403
[39] Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T, and Tarucha S 2015 Nat. Phys. 11 1032
[40] Sui M, Chen G, Ma L, Shan W Y, Tian D, Watanabe K, Taniguchi T, Jin X, Yao W, Xiao D, and Zhang Y 2015 Nat. Phys. 11 1027
[41] Hong X, Zou K, and Zhu J 2009 Phys. Rev. B 80 241415
[42] Wang J I J, Yang Y, Chen Y A, Watanabe K, Taniguchi T, Churchill H O H, and Jarillo-Herrero P 2015 Nano Lett. 15 1898
[43] Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, and Shepard K L 2011 Nat. Phys. 7 693
[44] Pan H, Wang Q, Wu X, Song T, Song Q, and Wang J 2020 Nanotechnology 31 355001
Viewed
Full text


Abstract