Chin. Phys. Lett.  2021, Vol. 38 Issue (7): 077501    DOI: 10.1088/0256-307X/38/7/077501
Strong Coupled Magnetic and Electric Ordering in Monolayer of Metal Thio(seleno)phosphates
Chenqiang Hua1, Hua Bai1, Yi Zheng1, Zhu-An Xu1, Shengyuan A. Yang2, Yunhao Lu1*, and Su-Huai Wei3
1Zhejiang Province Key Laboratory of Quantum Technology and Device, State Key Laboratory of Silicon Materials, Department of Physics, Zhejiang University, Hangzhou 310027, China
2Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
3Beijing Computational Science Research Center, Beijing 100193, China
Cite this article:   
Chenqiang Hua, Hua Bai, Yi Zheng et al  2021 Chin. Phys. Lett. 38 077501
Download: PDF(2464KB)   PDF(mobile)(3524KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The coupling between electric ordering and magnetic ordering in two-dimensional (2D) materials is important for both fundamental research of 2D multiferroics and future development of magnetism-based information storage and operation. Here, we introduce a scheme for realizing a magnetic phase transition through the transition of electric ordering. We take CuMoP$_{2}$S$_{6}$ monolayer as an example, which is a member of the large 2D transition-metal chalcogen-phosphates family. Based on first-principles calculations, we find that it is a multiferroic with unprecedented characters, namely, it exhibits two different phases: an antiferroelectric-antiferromagnetic phase and a ferroelectric-ferromagnetic phase, in which the electric and magnetic orderings are strongly coupled. Importantly, the electric polarization is out-of-plane, so the magnetism can be readily switched by using the gate electric field. Our finding reveals a series of 2D multiferroics with special magnetoelectric coupling, which hold great promise for experimental realization and practical applications.
Received: 06 May 2021      Published: 18 June 2021
PACS:  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  64.70.Tg (Quantum phase transitions)  
  77.80.B- (Phase transitions and Curie point) (First-principles theory)  
Fund: Supported by the National Key R&D Program of China (Grant No. 2019YFE0112000), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR21A040001), and the National Natural Science Foundation of China (Grant No. 11974307, 12088101, 11991060, and U1930402).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Chenqiang Hua
Hua Bai
Yi Zheng
Zhu-An Xu
Shengyuan A. Yang
Yunhao Lu
and Su-Huai Wei
[1] Fiebig M, Lottermoser T, Meier D, and Trassin M 2016 Nat. Rev. Mater. 1 16046
[2] Zhao W, Fu Z, Deng J, Li S, Han Y, Li M R, Wang X, and Hong J 2021 Chin. Phys. Lett. 38 037701
[3] Khomskii D 2009 Physics 2 20
[4] Dong S, Xiang H, and Dagotto E 2019 Natl. Sci. Rev. 6 629
[5] Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, and Zhu W 2017 Nat. Commun. 8 14956
[6] Wang Y, Xiao C, Chen M, Hua C, Zou J, Wu C, Jiang J, Yang S A, Lu Y, and Ji W 2018 Mater. Horiz. 5 521
[7] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature 546 270
[8] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265
[9] Xiao C, Wang F, Yang S A, Lu Y, Feng Y, and Zhang S 2018 Adv. Funct. Mater. 28 1707383
[10] Huang C, Du Y, Wu H, Xiang H, Deng K, and Kan E 2018 Phys. Rev. Lett. 120 147601
[11] Luo W, Xu K, and Xiang H 2017 Phys. Rev. B 96 235415
[12] Liu X, Pyatakov A P, and Ren W 2020 Phys. Rev. Lett. 125 247601
[13] Gong C, Kim E M, Wang Y, Lee G, and Zhang X 2019 Nat. Commun. 10 2657
[14] Li L and Wu M 2017 ACS Nano 11 6382
[15] Xu C, Chen P, Tan H, Yang Y, Xiang H, and Bellaiche L 2020 Phys. Rev. Lett. 125 37203
[16] Qi J, Wang H, Chen X, and Qian X 2018 Appl. Phys. Lett. 113 043102
[17] Zhang J J, Lin L, Zhang Y, Wu M, Yakobson B I, and Dong S 2018 J. Am. Chem. Soc. 140 9768
[18] Zhang J, Shen X, Wang Y, Ji C, Zhou Y, Wang J, Huang F, and Lu X 2020 Phys. Rev. Lett. 125 017601
[19] Weng Y, Lin L, Dagotto E, and Dong S 2016 Phys. Rev. Lett. 117 037601
[20] Xu M, Huang C, Li Y, Liu S, Zhong X, Jena P, Kan E, and Wang Y 2020 Phys. Rev. Lett. 124 067602
[21] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, and Liu Z 2016 Nat. Commun. 7 12357
[22] Susner M A, Chyasnavichyus M, McGuire M A, Ganesh P, and Maksymovych P 2017 Adv. Mater. 29 1602852
[23] Burr G, Durand E, Evain M, and Brec R 1993 J. Solid State Chem. 103 514
[24] Bourdon X, Maisonneuve V, Cajipe V B, Payen C, and Fischer J E 1999 J. Alloys Compd. 283 122
[25] Song W, Fei R, and Yang L 2017 Phys. Rev. B 96 235420
[26] Maisonneuve V, Cajipe V, Simon A, Von Der M R, and Ravez J 1997 Phys. Rev. B 56 10860
[27] Lai Y, Song Z, Wan Y, Xue M, Wang C, Ye Y, Dai L, Zhang Z, Yang W, Du H, and Yang J 2019 Nanoscale 11 5163
[28] Wei S H, Zhang S B, and Zunger A 1993 Phys. Rev. Lett. 70 1639
[29] Sun Z Z, Xun W, Jiang L, Zhong J L, and Wu Y Z 2019 J. Phys. D 52 465302
[30] Yang J C, He Q, Yu P, and Chu Y H 2015 Annu. Rev. Mater. Res. 45 249
[31] Anderson P W 1950 Phys. Rev. 79 350
[32] Goodenough J B 1955 Phys. Rev. 100 564
[33] Kanamori J 1959 J. Phys. Chem. Solids 10 87
[34] Seyler K L, Zhong D, Klein D R, Gao S, Zhang X, Huang B, Navarro-Moratalla E, Yang L, Cobden D H, McGuire M A, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2018 Nat. Phys. 14 277
[35] Sheppard D, Xiao P, Chemelewski W, Johnson D D, and Henkelman G 2012 J. Chem. Phys. 136 074103
[36] Cohen R E 1992 Nature 358 136
[37] Yin H M, Zhou H W, and Huang Y N 2019 Chin. Phys. Lett. 36 070501
Related articles from Frontiers Journals
[1] Feng Li, Weiyuan Duan, Manuel Pomaska, Malte Köhler, Kaining Ding, Yong Pu, Urs Aeberhard, and Uwe Rau. Quantum Transport across Amorphous-Crystalline Interfaces in Tunnel Oxide Passivated Contact Solar Cells: Direct versus Defect-Assisted Tunneling[J]. Chin. Phys. Lett., 2021, 38(3): 077501
[2] Yuan Wei, Xiaoyan Ma, Zili Feng, Devashibhai Adroja, Adrian Hillier, Pabitra Biswas, Anatoliy Senyshyn, Andreas Hoser, Jia-Wei Mei, Zi Yang Meng, Huiqian Luo, Youguo Shi, and Shiliang Li. Magnetic Phase Diagram of Cu$_{4-x}$Zn$_x$(OH)$_6$FBr Studied by Neutron-Diffraction and $\mu$SR Techniques[J]. Chin. Phys. Lett., 2020, 37(10): 077501
[3] Shilei Ji , Hong Wu , Shuang Zhou , Wei Niu , Lujun Wei , Xing-Ao Li , Feng Li, and Yong Pu. Enhancement of Curie Temperature under Built-in Electric Field in Multi-Functional Janus Vanadium Dichalcogenides[J]. Chin. Phys. Lett., 2020, 37(8): 077501
[4] Anders W. Sandvik, Bowen Zhao. Consistent Scaling Exponents at the Deconfined Quantum-Critical Point[J]. Chin. Phys. Lett., 2020, 37(5): 077501
[5] Huan Li, Zhi-Yong Wang, Xiao-Jun Zheng, Yu Liu, Yin Zhong. Magnetic and topological transitions in three-dimensional topological Kondo insulator[J]. Chin. Phys. Lett., 2018, 35(12): 077501
[6] Erhan Albayrak. The Mixed Spin-1/2 and Spin-1 Ising–Heisenberg Model in the Mean-Field Approximation: a New Approach[J]. Chin. Phys. Lett., 2018, 35(3): 077501
[7] Wei-Na Cui, Hong-Xia Li, Min Sun, Yong-Yuan Zhu. Coupling of Cutoff Modes in a Chain of Nonlinear Metallic Nanorods[J]. Chin. Phys. Lett., 2016, 33(12): 077501
[8] Zhong-Chao Wei, Hai-Jun Liao, Jing Chen, Hai-Dong Xie, Zhi-Yuan Liu, Zhi-Yuan Xie, Wei Li, B. Normand, Tao Xiang. Self-Consistent Spin-Wave Analysis of the 1/3 Magnetization Plateau in the Kagome Antiferromagnet[J]. Chin. Phys. Lett., 2016, 33(07): 077501
[9] Chuan-Chuan Gu, Xu-Liang Chen, Chen Shen, Lang-Sheng Ling, Li Pi, Zhao-Rong Yang, Yu-Heng Zhang. Pressure Tuning of Magnetism and Drastic Increment of Thermal Conductivity under Applied Magnetic Field in HgCr$_{2}$S$_{4}$[J]. Chin. Phys. Lett., 2016, 33(06): 077501
[10] Juan-Juan Liu, Jin-Chen Wang, Wei Luo, Jie-Ming Sheng, Zhang-Zhen He, S. A. Danilkin, Wei Bao. A Single-Crystal Neutron Diffraction Study on Magnetic Structure of the Quasi-One-Dimensional Antiferromagnet SrCo$_{2}$V$_{2}$O$_{8}$[J]. Chin. Phys. Lett., 2016, 33(03): 077501
[11] HE Qiang, GUO Yong-Quan. Structures and Magnetic Properties of Europium-Transition Metal-Gallium Ternary Intermetallic Compounds with 1:3 Type[J]. Chin. Phys. Lett., 2015, 32(01): 077501
[12] LI Peng-Fei, CAO Hai-Jing, ZHENG Li. Dzyaloshinskii–Moriya Interaction in Spin 1/2 Antiferromagnetic Rings with Nearest Next Neighbor Coupling[J]. Chin. Phys. Lett., 2013, 30(4): 077501
[13] WANG Hong-Tao, ZHOU Tong, HONG Bo, TAO Qian, XU Zhu-An** . Magnetic Properties of Orthorhombic Perovskite Ho1−xLaxMnO3[J]. Chin. Phys. Lett., 2011, 28(2): 077501
[14] WANG Xue-Li, WANG Chuan-Hui, TIAN Zhao-Ming, YIN Shi-Yan, YUAN Song-Liu . First-Principles Based Model of Spin-state Phase Transition[J]. Chin. Phys. Lett., 2010, 27(10): 077501
[15] LIU Yong-Sheng, ZHONG Yun-Bo, ZHANG Jin-Cang, GU Min-An, YANG Zheng-Long, REN Zhong-Ming. Crystalline and Magnetic Enhancement of Nanocrystalline MnZn Ferrites Fabricated under a High Magnetic Field[J]. Chin. Phys. Lett., 2009, 26(8): 077501
Full text