Chin. Phys. Lett.  2021, Vol. 38 Issue (7): 074203    DOI: 10.1088/0256-307X/38/7/074203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Surface-Enhanced Raman Scattering of Hydrogen Plasma-Treated Few-Layer MoTe$_{2}$
Xiao-Xue Jing1, Da-Qing Li2, Yong Zhang1, Xiang-Yu Hou1, Jie Jiang1, Xing-Ce Fan1, Meng-Chen Wang1, Shao-Peng Feng1, Yuan-fang Yu , Jun-Peng Lu1, Zhen-Liang Hu1*, and Zhen-Hua Ni1*
1Department of Physics, Southeast University, Nanjing 211189, China
2Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
Cite this article:   
Xiao-Xue Jing, Da-Qing Li, Yong Zhang et al  2021 Chin. Phys. Lett. 38 074203
Download: PDF(2174KB)   PDF(mobile)(2779KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-dimensional surface-enhanced Raman scattering (SERS) substrates have drawn intense attention due to their excellent spectral reproducibility, high uniformity and perfect anti-interference ability. However, the inferior detection sensitivity and low enhancement have limited the practical application of two-dimensional SERS substrates. To address this issue, we propose that the interaction between the MoTe$_{2}$ substrate and the analyte rhodamine 6G molecules could be remarkably enhanced by the introduced p-doping effect and lattice distortion of MoTe$_{2}$ via hydrogen plasma treatment. After the treatment, the SERS is greatly improved, the enhancement factor of probe molecules reaches $1.83 \times 10^{6}$ as well as the limit of detection concentration reaches $10^{-13}$ M. This method is anticipated to afford new enhancement probability for other 2D materials, even non-metal oxide semiconductor SERS substrates.
Received: 09 April 2021      Published: 05 July 2021
PACS:  42.65.Dr (Stimulated Raman scattering; CARS)  
  52.75.Di (Ion and plasma propulsion)  
  61.05.js (X-ray photoelectron diffraction)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 91963130, 11704068, 61927808, and 61705106), the National Key R&D Program of China (Grant No. 2019YFA0308000), the Fundamental Research Funds for the Central Universities (Grant Nos. 2242021k10009, 2242021R20037, and 2242021R20035), and the China Postdoctoral Science Foundation (Grant No. 2018M632197).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/7/074203       OR      https://cpl.iphy.ac.cn/Y2021/V38/I7/074203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Xue Jing
Da-Qing Li
Yong Zhang
Xiang-Yu Hou
Jie Jiang
Xing-Ce Fan
Meng-Chen Wang
Shao-Peng Feng
Yuan-fang Yu 
Jun-Peng Lu
Zhen-Liang Hu
and Zhen-Hua Ni
[1] Lee D, Choe Y J, Lee M, Jeong D H, and Paik S R 2011 Langmuir 27 12782
[2] Ryu H J, Shin H, Oh S, Joo J H, Choi Y, and Lee J S 2020 ACS Appl. Mater. & Interfaces 12 2842
[3] Alvarez-Puebla R A, dos Santos, Jr David S, and Aroca R F 2007 Analyst 132 1210
[4] Pearson B, Mills A, Tucker M, Gao S, McLandsborough L, and He L 2018 Food Microbiol. 72 89
[5] Kneipp J, Kneipp H, and Kneipp K 2008 Chem. Soc. Rev. 37 1052
[6] Wang X, Shi W, She G, and Mu L 2012 Phys. Chem. Chem. Phys. 14 5891
[7] Philip D, Gopchandran K G, Unni C, and Nissamudeen K M 2008 Spectrochim. Acta Part A 70 780
[8] Zhang A Q, Wang Q L, Gao Y, Cheng S H, and Li H D 2020 Chin. Phys. Lett. 37 068102
[9] Ye X, Shen J, Tao X, Ye G, and Yang B 2021 Chin. Phys. Lett. 38 038102
[10] Zhu C, Meng G, Huang Q, Zhang Z, Xu Q, Liu G, Huang Z, and Chu Z 2011 Chem. Commun. 47 2709
[11] Zhong Y T, Cheng Z Q, Ma L, Wang J H, Hao Z H, and Wang Q Q 2014 Chin. Phys. Lett. 31 047302
[12] Bozzini B, Mele C, D'Urzo L, and Romanello V 2006 J. Appl. Electrochem. 36 973
[13] Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, and Liu Z 2010 Nano Lett. 10 553
[14] Ling X, Fang W, Lee Y H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y, Zhang J, Kong J, and Dresselhaus M S 2014 Nano Lett. 14 3033
[15] Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, and Lombardi J R 2016 ACS Photon. 3 1164
[16] Zhang R, Drysdale D, Koutsos V, and Cheung R J 2017 Adv. Funct. Mater. 27 1702455
[17] Feng S, Dos S M C, Carvalho B R, Lv R, Li Q, Fujisawa K, Elias A L, Lei Y, Perea-Lopez N, and Endo M J 2016 Sci. Adv. 2 e1600322
[18] Ying Y, Peng M, Zhang Y M, Han J C, Zhang X H et al. 2017 Adv. Funct. Mater. 27 1606694
[19] Wang P, Xia M, Liang O, Sun K, Cipriano A F, Schroeder T, Liu H, and Xie Y H 2015 Anal. Chem. 87 10255
[20] Tan Y, Ma L, Gao Z, Chen M, and Chen F 2017 Nano Lett. 17 2621
[21] Zhang L S, Fang Y, and Wang P J 2012 Chin. Phys. Lett. 29 114210
[22] Yao J, Quan Y, Gao R, Li J, Chen L, Liu Y, Lang J, Shen H, Wang Y, Yang J, and Gao M 2019 Langmuir 35 8921
[23] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, and Idrobo J C 2013 Nano Lett. 13 2615
[24] Leiter R, Li Y, and Kaiser U 2020 Nanotechnology 31 495704
[25] Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, and Krasheninnikov A V 2012 Phys. Rev. Lett. 109 035503
[26] Chen J, Zhu J, Wang Q, Wan J, and Liu R 2020 Small 16 2001428
[27] Tomašević-Ilić T, Jovanović Ð, Popov I, Fandan R, Pedrós J, Spasenović M, and Gajić R 2018 Appl. Surf. Sci. 458 446
[28] Kong X, Xu Y, Cui Z, Li Z, Liang Y, Gao Z, Zhu S, and Yang X 2018 Appl. Catal. B: Environ. 230 11
[29] Zhu J, Wang Z, Yu H, Li N, Zhang J, Meng J, Liao M, Zhao J, Lu X, Du L, Yang R, Shi D, Jiang Y, and Zhang G 2017 J. Am. Chem. Soc. 139 10216
[30] Zhang L, Feng S, Xiao S, Shen G, Zhang X, Nan H, Gu X, and Ostrikov K 2018 Appl. Surf. Sci. 441 639
[31] Sun L, Hu H, Zhan D, Yan J, Liu L, Teguh J S, Yeow E K, Lee P S, and Shen Z 2014 Small 10 1090
[32] Ouyang B, Zhang Y, Xia X, Rawat R S, and Fan H J 2018 Mater. Today Nano 3 28
[33] Ctibor P, Štengl V, Píš I, Zahoranová T, and Nehasil V 2012 Ceram. Int. 38 3453
[34] Ruppert C, Aslan O B, and Heinz T F 2014 Nano Lett. 14 6231
[35] Chen B, Sahin H, Suslu A, Ding L, Bertoni M I, Peeters F M, and Tongay S 2015 ACS Nano 9 5326
[36] Islam M R, Kang N, Bhanu U, Paudel H P, Erementchouk M, Tetard L, Leuenberger M N, and Khondaker S I 2014 Nanoscale 6 10033
[37] Liu H, Han N, and Zhao J 2015 RSC Adv. 5 17572
[38] Zheng X, Wei Y, Deng C, Huang H, Yu Y, Wang G, Peng G, Zhu Z, Zhang Y, Jiang T, Qin S, Zhang R, and Zhang X 2018 ACS Appl. Mater. & Interfaces 10 30045
[39] Qu D, Liu X, Huang M, Lee C, Ahmed F, Kim H, Ruoff R S, Hone J, and Yoo W J 2017 Adv. Mater. 29 1606433
[40] Zuo P, Jiang L, Li X, Ran P, Li B, Song A, Tian M, Ma T, Guo B, Qu L, and Lu Y 2019 Nanoscale 11 485
[41] Tao L, Chen K, Chen Z, Cong C, Qiu C, Chen J, Wang X, Chen H, Yu T, Xie W, Deng S, and Xu J B 2018 J. Am. Chem. Soc. 140 8696
[42] Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, and Zhao Z 2017 Nat. Commun. 8 1993
[43] Wang X, Shi W, Jin Z, Huang W, Lin J, Ma G, Li S, and Guo L 2017 Angew. Chem. Int. Ed. Engl. 56 9851
[44] Lin J, Shang Y, Li X, Yu J, Wang X, and Guo L 2017 Adv. Mater. 29 1604797
[45] Cong S, Yuan Y, Chen Z, Hou J, Yang M, Su Y, Zhang Y, Li L, Li Q, Geng F, and Zhao Z 2015 Nat. Commun. 6 7800
[46] Li C, Yan X, Song X, Bao W, Ding S, Zhang D W, and Zhou P 2017 Nanotechnology 28 415201
Viewed
Full text


Abstract