FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Surface-Enhanced Raman Scattering of Hydrogen Plasma-Treated Few-Layer MoTe$_{2}$ |
Xiao-Xue Jing1, Da-Qing Li2, Yong Zhang1, Xiang-Yu Hou1, Jie Jiang1, Xing-Ce Fan1, Meng-Chen Wang1, Shao-Peng Feng1, Yuan-fang Yu , Jun-Peng Lu1, Zhen-Liang Hu1*, and Zhen-Hua Ni1* |
1Department of Physics, Southeast University, Nanjing 211189, China 2Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
|
|
Cite this article: |
Xiao-Xue Jing, Da-Qing Li, Yong Zhang et al 2021 Chin. Phys. Lett. 38 074203 |
|
|
Abstract Two-dimensional surface-enhanced Raman scattering (SERS) substrates have drawn intense attention due to their excellent spectral reproducibility, high uniformity and perfect anti-interference ability. However, the inferior detection sensitivity and low enhancement have limited the practical application of two-dimensional SERS substrates. To address this issue, we propose that the interaction between the MoTe$_{2}$ substrate and the analyte rhodamine 6G molecules could be remarkably enhanced by the introduced p-doping effect and lattice distortion of MoTe$_{2}$ via hydrogen plasma treatment. After the treatment, the SERS is greatly improved, the enhancement factor of probe molecules reaches $1.83 \times 10^{6}$ as well as the limit of detection concentration reaches $10^{-13}$ M. This method is anticipated to afford new enhancement probability for other 2D materials, even non-metal oxide semiconductor SERS substrates.
|
|
Received: 09 April 2021
Published: 05 July 2021
|
|
PACS: |
42.65.Dr
|
(Stimulated Raman scattering; CARS)
|
|
52.75.Di
|
(Ion and plasma propulsion)
|
|
61.05.js
|
(X-ray photoelectron diffraction)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 91963130, 11704068, 61927808, and 61705106), the National Key R&D Program of China (Grant No. 2019YFA0308000), the Fundamental Research Funds for the Central Universities (Grant Nos. 2242021k10009, 2242021R20037, and 2242021R20035), and the China Postdoctoral Science Foundation (Grant No. 2018M632197). |
|
|
[1] | Lee D, Choe Y J, Lee M, Jeong D H, and Paik S R 2011 Langmuir 27 12782 |
[2] | Ryu H J, Shin H, Oh S, Joo J H, Choi Y, and Lee J S 2020 ACS Appl. Mater. & Interfaces 12 2842 |
[3] | Alvarez-Puebla R A, dos Santos, Jr David S, and Aroca R F 2007 Analyst 132 1210 |
[4] | Pearson B, Mills A, Tucker M, Gao S, McLandsborough L, and He L 2018 Food Microbiol. 72 89 |
[5] | Kneipp J, Kneipp H, and Kneipp K 2008 Chem. Soc. Rev. 37 1052 |
[6] | Wang X, Shi W, She G, and Mu L 2012 Phys. Chem. Chem. Phys. 14 5891 |
[7] | Philip D, Gopchandran K G, Unni C, and Nissamudeen K M 2008 Spectrochim. Acta Part A 70 780 |
[8] | Zhang A Q, Wang Q L, Gao Y, Cheng S H, and Li H D 2020 Chin. Phys. Lett. 37 068102 |
[9] | Ye X, Shen J, Tao X, Ye G, and Yang B 2021 Chin. Phys. Lett. 38 038102 |
[10] | Zhu C, Meng G, Huang Q, Zhang Z, Xu Q, Liu G, Huang Z, and Chu Z 2011 Chem. Commun. 47 2709 |
[11] | Zhong Y T, Cheng Z Q, Ma L, Wang J H, Hao Z H, and Wang Q Q 2014 Chin. Phys. Lett. 31 047302 |
[12] | Bozzini B, Mele C, D'Urzo L, and Romanello V 2006 J. Appl. Electrochem. 36 973 |
[13] | Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, and Liu Z 2010 Nano Lett. 10 553 |
[14] | Ling X, Fang W, Lee Y H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y, Zhang J, Kong J, and Dresselhaus M S 2014 Nano Lett. 14 3033 |
[15] | Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, and Lombardi J R 2016 ACS Photon. 3 1164 |
[16] | Zhang R, Drysdale D, Koutsos V, and Cheung R J 2017 Adv. Funct. Mater. 27 1702455 |
[17] | Feng S, Dos S M C, Carvalho B R, Lv R, Li Q, Fujisawa K, Elias A L, Lei Y, Perea-Lopez N, and Endo M J 2016 Sci. Adv. 2 e1600322 |
[18] | Ying Y, Peng M, Zhang Y M, Han J C, Zhang X H et al. 2017 Adv. Funct. Mater. 27 1606694 |
[19] | Wang P, Xia M, Liang O, Sun K, Cipriano A F, Schroeder T, Liu H, and Xie Y H 2015 Anal. Chem. 87 10255 |
[20] | Tan Y, Ma L, Gao Z, Chen M, and Chen F 2017 Nano Lett. 17 2621 |
[21] | Zhang L S, Fang Y, and Wang P J 2012 Chin. Phys. Lett. 29 114210 |
[22] | Yao J, Quan Y, Gao R, Li J, Chen L, Liu Y, Lang J, Shen H, Wang Y, Yang J, and Gao M 2019 Langmuir 35 8921 |
[23] | Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, and Idrobo J C 2013 Nano Lett. 13 2615 |
[24] | Leiter R, Li Y, and Kaiser U 2020 Nanotechnology 31 495704 |
[25] | Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, and Krasheninnikov A V 2012 Phys. Rev. Lett. 109 035503 |
[26] | Chen J, Zhu J, Wang Q, Wan J, and Liu R 2020 Small 16 2001428 |
[27] | Tomašević-Ilić T, Jovanović Ð, Popov I, Fandan R, Pedrós J, Spasenović M, and Gajić R 2018 Appl. Surf. Sci. 458 446 |
[28] | Kong X, Xu Y, Cui Z, Li Z, Liang Y, Gao Z, Zhu S, and Yang X 2018 Appl. Catal. B: Environ. 230 11 |
[29] | Zhu J, Wang Z, Yu H, Li N, Zhang J, Meng J, Liao M, Zhao J, Lu X, Du L, Yang R, Shi D, Jiang Y, and Zhang G 2017 J. Am. Chem. Soc. 139 10216 |
[30] | Zhang L, Feng S, Xiao S, Shen G, Zhang X, Nan H, Gu X, and Ostrikov K 2018 Appl. Surf. Sci. 441 639 |
[31] | Sun L, Hu H, Zhan D, Yan J, Liu L, Teguh J S, Yeow E K, Lee P S, and Shen Z 2014 Small 10 1090 |
[32] | Ouyang B, Zhang Y, Xia X, Rawat R S, and Fan H J 2018 Mater. Today Nano 3 28 |
[33] | Ctibor P, Štengl V, Píš I, Zahoranová T, and Nehasil V 2012 Ceram. Int. 38 3453 |
[34] | Ruppert C, Aslan O B, and Heinz T F 2014 Nano Lett. 14 6231 |
[35] | Chen B, Sahin H, Suslu A, Ding L, Bertoni M I, Peeters F M, and Tongay S 2015 ACS Nano 9 5326 |
[36] | Islam M R, Kang N, Bhanu U, Paudel H P, Erementchouk M, Tetard L, Leuenberger M N, and Khondaker S I 2014 Nanoscale 6 10033 |
[37] | Liu H, Han N, and Zhao J 2015 RSC Adv. 5 17572 |
[38] | Zheng X, Wei Y, Deng C, Huang H, Yu Y, Wang G, Peng G, Zhu Z, Zhang Y, Jiang T, Qin S, Zhang R, and Zhang X 2018 ACS Appl. Mater. & Interfaces 10 30045 |
[39] | Qu D, Liu X, Huang M, Lee C, Ahmed F, Kim H, Ruoff R S, Hone J, and Yoo W J 2017 Adv. Mater. 29 1606433 |
[40] | Zuo P, Jiang L, Li X, Ran P, Li B, Song A, Tian M, Ma T, Guo B, Qu L, and Lu Y 2019 Nanoscale 11 485 |
[41] | Tao L, Chen K, Chen Z, Cong C, Qiu C, Chen J, Wang X, Chen H, Yu T, Xie W, Deng S, and Xu J B 2018 J. Am. Chem. Soc. 140 8696 |
[42] | Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, and Zhao Z 2017 Nat. Commun. 8 1993 |
[43] | Wang X, Shi W, Jin Z, Huang W, Lin J, Ma G, Li S, and Guo L 2017 Angew. Chem. Int. Ed. Engl. 56 9851 |
[44] | Lin J, Shang Y, Li X, Yu J, Wang X, and Guo L 2017 Adv. Mater. 29 1604797 |
[45] | Cong S, Yuan Y, Chen Z, Hou J, Yang M, Su Y, Zhang Y, Li L, Li Q, Geng F, and Zhao Z 2015 Nat. Commun. 6 7800 |
[46] | Li C, Yan X, Song X, Bao W, Ding S, Zhang D W, and Zhou P 2017 Nanotechnology 28 415201 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|