FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
A Self-Diffraction Temporal Filter for Contrast Enhancement in Femtosecond Ultra-High Intensity Laser |
Xian-Zhi Wang1,2, Zhao-Hua Wang1,4*, Yuan-Yuan Wang1,2, Xu Zhang1,2, Jia-Jun Song1,2, and Zhi-Yi Wei1,2,3* |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
|
|
Cite this article: |
Xian-Zhi Wang, Zhao-Hua Wang, Yuan-Yuan Wang et al 2021 Chin. Phys. Lett. 38 074202 |
|
|
Abstract We demonstrated a nonlinear temporal filter based on the self-diffraction (SD) process. Temporal contrast enhancement, angular dispersion and spectrum broadening properties of the SD process are investigated in experiment and simulation. Driven by spectral phase well compensated laser pulses with bandwidth of 28 nm, the filter produced clean pulses with a temporal contrast higher than $10^{10}$ and excellent spatial profile, the spectrum of which was smoothed and broadened to 64 nm. After implementing this filter into a home-made 30 TW Ti:sapphire amplifier, temporal contrast of the amplified pulses was enhanced to $10^{10}$ within the time scale of $-400$ ps.
|
|
Received: 16 March 2021
Published: 05 July 2021
|
|
PACS: |
42.60.-v
|
(Laser optical systems: design and operation)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
87.57.cj
|
(Contrast)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11774410 and 91850209), and the Strategic Priority Research Program of CAS (Grant No. XDB16030200). |
|
|
[1] | Strickland D and Mourou G 1985 Opt. Commun. 55 447 |
[2] | Wang Z, Liu C, Shen Z, Zhang Q, Teng H, and Wei Z 2011 Opt. Lett. 36 3194 |
[3] | Sung J H et al. 2017 Opt. Lett. 42 2058 |
[4] | Li W et al. 2018 Opt. Lett. 43 5681 |
[5] | Lureau F et al. 2020 High Power Laser Sci. Eng. 8 E43 |
[6] | Guo Z et al. 2018 Opt. Express 26 26776 |
[7] | Kiriyama H et al. 2018 Opt. Lett. 43 4595 |
[8] | Yoon J W, Jeon C, Shin J, Lee S K, Lee H W, Choi I W, Kim H T, Sung J H, and Nam C H 2019 Opt. Express 27 20412 |
[9] | Tanaka K A et al. 2020 Matter Radiat. Extremes 5 024402 |
[10] | Kiriyama H, Miyasaka Y, Sagisaka A, Ogura K, Nishiuchi M, Pirozhkov A S, Fukuda Y, Kando M, and Kondo K 2020 Opt. Lett. 45 1100 |
[11] | Ivanov V V, Maksimchuk A, and Mourou G 2003 Appl. Opt. 42 7231 |
[12] | Didenko N V, Konyashchenko A V, Lutsenko A P, and Tenyakov S Y 2008 Opt. Express 16 3178 |
[13] | Kalashnikov M P, Risse E, Schönnagel H, and Sandner W 2005 Opt. Lett. 30 923 |
[14] | Itatani J, Faure J, Nantel M, Mourou G, and Watanabe S 1998 Opt. Commun. 148 70 |
[15] | Liu C, Wang Z, Li W, Zhang Q, Han H, Teng H, and Wei Z 2010 Opt. Lett. 35 3096 |
[16] | Jullien A et al. 2005 Opt. Lett. 30 920 |
[17] | Liu J, Okamura K, Kida Y, and Kobayashi T 2010 Opt. Express 18 22245 |
[18] | Li F, Shen X, Wang P, Li Y, Liu J, Wang Z, and Li R 2016 Laser Phys. Lett. 13 055303 |
[19] | Nighan W L, Gong T, Liou L, and Fauchet P M 1989 Opt. Commun. 69 339 |
[20] | Kane D J and Trebino R 1993 IEEE J. Quantum Electron. 29 571 |
[21] | Shen X, Wang P, Liu J, and Li R 2018 High Power Laser Sci. Eng. 6 e23 |
[22] | Qin S, Wang Z H, Yang S S, Shen Z W, Dong Q L, and Wei Z Y 2017 Chin. Phys. Lett. 34 024205 |
[23] | Xie N, Zeng X, Wang X, Zhou K, Sun L, Zuo Y, Huang X, and Su J 2019 Optik 178 279 |
[24] | Ohmae G, Yagi T, Nanri K, and Fujioka T 2000 Jpn. J. Appl. Phys. 39 5864 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|