Chin. Phys. Lett.  2021, Vol. 38 Issue (6): 060501    DOI: 10.1088/0256-307X/38/6/060501
GENERAL |
Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System
Zequn Qi , Zhao Zhang , and Biao Li*
School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China
Cite this article:   
Zequn Qi , Zhao Zhang , and Biao Li 2021 Chin. Phys. Lett. 38 060501
Download: PDF(604KB)   PDF(mobile)(652KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract On the basis of $N$-soliton solutions, space-curved resonant line solitons are derived via a new constraint proposed here, for a generalized $(2+1)$-dimensional fifth-order KdV system. The dynamic properties of these new resonant line solitons are studied in detail. We then discuss the interaction between a resonance line soliton and a lump wave in greater detail. Our results highlight the distinctions between the generalized $(2+1)$-dimensional fifth-order KdV system and the classical type.
Received: 27 January 2021      Published: 25 May 2021
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11775121 and 11435005), and the K. C. Wong Magna Fund at Ningbo University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/6/060501       OR      https://cpl.iphy.ac.cn/Y2021/V38/I6/060501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zequn Qi 
Zhao Zhang 
and Biao Li
[1] Hirota R 1971 Phys. Rev. Lett. 27 1192
[2] Ma W X 2020 Opt. Quantum Electron. 52 1
[3] Zhang Z, Yang X Y, and Li B 2020 Nonlinear Dyn. 100 1551
[4] Yuan F, Cheng Y, and He J S 2020 Commun. Nonlinear Sci. Numer. Simul. 83 105027
[5] Zhang Z, Yang S X, and Li B 2019 Chin. Phys. Lett. 36 120501
[6] Wang B, Zhang Z, and Li B 2020 Chin. Phys. Lett. 37 030501
[7] Wu Y H, Liu C, Yang Z Y, and Yang W L 2020 Chin. Phys. Lett. 37 040501
[8] Liu J G 2018 Appl. Math. Lett. 86 36
[9] Lü J Q, Bilige S, and Chaolu T 2018 Nonlinear Dyn. 91 1669
[10] Wang C J, Fang H, and Tang X X 2019 Nonlinear Dyn. 95 2943
[11] Yan Z W and Lou S Y 2020 Commun. Nonlinear Sci. Numer. Simul. 91 105425
[12] Wazwaz A M 2006 Appl. Math. Lett. 19 1162
[13] Chen A H 2010 Phys. Lett. A 374 2340
[14] Wang Y F, Tian B, and Jiang Y 2017 Appl. Math. Comput. 292 448
[15] Chen A H and Wang F F 2019 Phys. Scr. 94 055206
[16] Dai C Q and Yu D G 2008 Int. J. Theor. Phys. 47 741
[17] Zhang Z, Qi Z Q, and Li B 2021 Appl. Math. Lett. 116 107004
[18] Ma W X 2015 Phys. Lett. A 379 1975
[19] Ma W X and Zhou Y 2018 J. Differ. Eq. 264 2633
[20] Zhang Z, Yang X Y, Li W T, and Li B 2019 Chin. Phys. B 28 110201
Viewed
Full text


Abstract