GENERAL |
|
|
|
|
Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System |
Zequn Qi , Zhao Zhang , and Biao Li* |
School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China |
|
Cite this article: |
Zequn Qi , Zhao Zhang , and Biao Li 2021 Chin. Phys. Lett. 38 060501 |
|
|
Abstract On the basis of $N$-soliton solutions, space-curved resonant line solitons are derived via a new constraint proposed here, for a generalized $(2+1)$-dimensional fifth-order KdV system. The dynamic properties of these new resonant line solitons are studied in detail. We then discuss the interaction between a resonance line soliton and a lump wave in greater detail. Our results highlight the distinctions between the generalized $(2+1)$-dimensional fifth-order KdV system and the classical type.
|
|
Received: 27 January 2021
Published: 25 May 2021
|
|
PACS: |
05.45.Yv
|
(Solitons)
|
|
02.30.Ik
|
(Integrable systems)
|
|
47.20.Ky
|
(Nonlinearity, bifurcation, and symmetry breaking)
|
|
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11775121 and 11435005), and the K. C. Wong Magna Fund at Ningbo University. |
|
|
[1] | Hirota R 1971 Phys. Rev. Lett. 27 1192 |
[2] | Ma W X 2020 Opt. Quantum Electron. 52 1 |
[3] | Zhang Z, Yang X Y, and Li B 2020 Nonlinear Dyn. 100 1551 |
[4] | Yuan F, Cheng Y, and He J S 2020 Commun. Nonlinear Sci. Numer. Simul. 83 105027 |
[5] | Zhang Z, Yang S X, and Li B 2019 Chin. Phys. Lett. 36 120501 |
[6] | Wang B, Zhang Z, and Li B 2020 Chin. Phys. Lett. 37 030501 |
[7] | Wu Y H, Liu C, Yang Z Y, and Yang W L 2020 Chin. Phys. Lett. 37 040501 |
[8] | Liu J G 2018 Appl. Math. Lett. 86 36 |
[9] | Lü J Q, Bilige S, and Chaolu T 2018 Nonlinear Dyn. 91 1669 |
[10] | Wang C J, Fang H, and Tang X X 2019 Nonlinear Dyn. 95 2943 |
[11] | Yan Z W and Lou S Y 2020 Commun. Nonlinear Sci. Numer. Simul. 91 105425 |
[12] | Wazwaz A M 2006 Appl. Math. Lett. 19 1162 |
[13] | Chen A H 2010 Phys. Lett. A 374 2340 |
[14] | Wang Y F, Tian B, and Jiang Y 2017 Appl. Math. Comput. 292 448 |
[15] | Chen A H and Wang F F 2019 Phys. Scr. 94 055206 |
[16] | Dai C Q and Yu D G 2008 Int. J. Theor. Phys. 47 741 |
[17] | Zhang Z, Qi Z Q, and Li B 2021 Appl. Math. Lett. 116 107004 |
[18] | Ma W X 2015 Phys. Lett. A 379 1975 |
[19] | Ma W X and Zhou Y 2018 J. Differ. Eq. 264 2633 |
[20] | Zhang Z, Yang X Y, Li W T, and Li B 2019 Chin. Phys. B 28 110201 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|