GENERAL |
|
|
|
|
Topological Knots in Quantum Spin Systems |
X. M. Yang , L. Jin*, and Z. Song* |
School of Physics, Nankai University, Tianjin 300071, China |
|
Cite this article: |
X. M. Yang , L. Jin, and Z. Song 2021 Chin. Phys. Lett. 38 060302 |
|
|
Abstract Knot theory provides a powerful tool for understanding topological matters in biology, chemistry, and physics. Here knot theory is introduced to describe topological phases in a quantum spin system. Exactly solvable models with long-range interactions are investigated, and Majorana modes of the quantum spin system are mapped into different knots and links. The topological properties of ground states of the spin system are visualized and characterized using crossing and linking numbers, which capture the geometric topologies of knots and links. The interactivity of energy bands is highlighted. In gapped phases, eigenstate curves are tangled and braided around each other, forming links. In gapless phases, the tangled eigenstate curves may form knots. Our findings provide an alternative understanding of phases in the quantum spin system, and provide insights into one-dimension topological phases of matter.
|
|
Received: 26 February 2021
Published: 25 May 2021
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grants Nos. 11874225, 11975128, and 11605094). |
|
|
[1] | Adams C C 1994 The Knot Book (New York: Freeman) |
[2] | Alexander J W and Briggs G B 1926 Ann. Math. 28 562 |
[3] | Wasserman S A, Dungan J M, and Cozzarelli N R 1985 Science 229 171 |
[4] | Forgan R S, Sauvage J P, and Stoddart J F 2011 Chem. Rev. 111 5434 |
[5] | Wilczek F and Zee A 1983 Phys. Rev. Lett. 51 2250 |
[6] | Rovelli C and Smolin L 1988 Phys. Rev. Lett. 61 1155 |
[7] | Yang C N and Ge M L 1989 Braid Group, Knot Theory and Statistical Mechanics (Singapore: World Scientific) |
[8] | Wu F Y 1992 Rev. Mod. Phys. 64 1099 |
[9] | Atiyah M 1995 Rev. Mod. Phys. 67 977 |
[10] | Katritch V, Bednar J, Michoud D, Scharein R G, Dubochet J, and Stasiak A 1996 Nature 384 142 |
[11] | Faddeev L and Niemi A J 1997 Nature 387 58 |
[12] | Kauffman L H 2005 Rep. Prog. Phys. 68 2829 |
[13] | Kleckner D and Irvine W T M 2013 Nat. Phys. 9 253 |
[14] | Ren J R, Zhu T, and Duan Y S 2008 Chin. Phys. Lett. 25 353 |
[15] | Kleckner D, Kauffman L H, and Irvine W T M 2016 Nat. Phys. 12 650 |
[16] | Leach J, Dennis M R, Courtial J, and Padgett M J 2004 Nature 432 165 |
[17] | Dennis M R, King R P, Jack B, O'Holleran K, and Padgett M J 2010 Nat. Phys. 6 118 |
[18] | Taylor A J and Dennis M R 2016 Nat. Commun. 7 12346 |
[19] | Hall D S, Ray M W, Tiurev K, Ruokokoski E, Gheorghe A H, and Möttönen M 2016 Nat. Phys. 12 478 |
[20] | Sun X Q, Lian B, and Zhang S C 2017 Phys. Rev. Lett. 119 147001 |
[21] | Chang G, Xu S Y, Zhou X, Huang S M, Singh B, Wang B, Belopolski I, Yin J, Zhang S, Bansil A, Lin H, and Hasan M Z 2017 Phys. Rev. Lett. 119 156401 |
[22] | Chen W, Lu H Z, and Hou J M 2017 Phys. Rev. B 96 041102(R) |
[23] | Ezawa M 2017 Phys. Rev. B 96 041202(R) |
[24] | Bi R, Yan Z, Lu L, and Wang Z 2017 Phys. Rev. B 96 201305(R) |
[25] | Yan Z, Bi R, Shen H, Lu L, Zhang S C, and Wang Z 2017 Phys. Rev. B 96 041103(R) |
[26] | Chang P Y and Yee C H 2017 Phys. Rev. B 96 081114(R) |
[27] | Ackerman P J and Smalyukh I I 2017 Phys. Rev. X 7 011006 |
[28] | Deng D L, Wang S T, Shen C, and Duan L M 2013 Phys. Rev. B 88 201105(R) |
[29] | Deng D L, Wang S T, Sun K, and Duan L M 2018 Chin. Phys. Lett. 35 013701 |
[30] | Yan Q, Liu R, Yan Z, Liu B, Chen H, Wang Z, and Lu L 2018 Nat. Phys. 14 461 |
[31] | Yang Z, Chiu C K, Fang C, and Hu J 2020 Phys. Rev. Lett. 124 186402 |
[32] | Yuan X X, He L, Wang S T, Deng D L, Wang F, Lian W Q, Wang X, Zhang C H, Zhang H L, Chang X Y, and Duan L M 2017 Chin. Phys. Lett. 34 060302 |
[33] | Yang Z and Hu J 2019 Phys. Rev. B 99 081102(R) |
[34] | Carlström J and Bergholtz E J 2018 Phys. Rev. A 98 042114 |
[35] | Carlström J, Strälhammar M, Budich J C, and Bergholtz E J 2019 Phys. Rev. B 99 161115(R) |
[36] | Lee C H, Li G, Liu Y, Tai T, Thomale R, and Zhang X 2018 arXiv:1812.02011 [cond-mat.mes-hall] |
[37] | Yang X M, Wu H C, Wang P, Jin L, and Song Z 2020 J. Phys. Commun. 4 095005 |
[38] | Wu H C, Yang X M, Jin L, and Song Z 2020 Phys. Rev. B 102 161101(R) |
[39] | Hu H and Zhao E 2021 Phys. Rev. Lett. 126 010401 |
[40] | Feynman R P 1949 Phys. Rev. 76 769 |
[41] | Zak J 1989 Phys. Rev. Lett. 62 2747 |
[42] | Xiao D, Chang M C, and Niu Q 2010 Rev. Mod. Phys. 82 1959 |
[43] | Xu S, Zhou L, Wang X Y, Wang H, Lin J F, Zeng X Y, Cheng P, Weng H, and Xia T L 2020 Chin. Phys. Lett. 37 107504 |
[44] | Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K, and He K 2019 Chin. Phys. Lett. 36 076801 |
[45] | Jiang G, Feng Y, Wu W, Li S, Bai Y, Li Y, Zhang Q, Gu L, Feng X, Zhang D, Song C, Wang L, Li W, Ma X C, Xue Q K, Wang Y, and He K 2018 Chin. Phys. Lett. 35 076802 |
[46] | Chen C, Liu Q, Zhang T Z, Li D, Shen P P, Dong X L, Zhao Z X, Zhang T, and Feng D L 2019 Chin. Phys. Lett. 36 057403 |
[47] | Pei C, Xia Y, Wu J, Zhao Y, Gao L, Ying T, Gao B, Li N, Yang W, Zhang D, Gou H, Chen Y, Hosono H, Li G, and Qi Y 2020 Chin. Phys. Lett. 37 066401 |
[48] | Deng H X, Song Z G, Li S S, Wei S H, and Luo J W 2018 Chin. Phys. Lett. 35 057301 |
[49] | Zhang G, Li C, and Song Z 2017 Sci. Rep. 7 8176 |
[50] | Suzuki M 1971 Prog. Theor. Phys. 46 1337 |
[51] | Perk J H H 2017 arXiv:1710.03384 [cond-mat.stat-mech] |
[52] | Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press) |
[53] | Kitaev A Y 2001 Phys. Usp. 44 131 |
[54] | Niu Y, Chung S B, Hsu C H, Mandal I, Raghu S, and Chakravarty S 2012 Phys. Rev. B 85 035110 |
[55] | Alexander J W 1923 Trans. Am. Math. Soc. 25 173 |
[56] | Verresen R, Jones N G, and Pollmann F 2018 Phys. Rev. Lett. 120 057001 |
[57] | Ryu S, Schnyder A P, Furusaki A, and Ludwig A W W 2010 New J. Phys. 12 065010 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|