Chin. Phys. Lett.  2021, Vol. 38 Issue (5): 057304    DOI: 10.1088/0256-307X/38/5/057304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Transforming a Two-Dimensional Layered Insulator into a Semiconductor or a Highly Conductive Metal through Transition Metal Ion Intercalation
Xiu Yan1,2, Wei-Li Zhen1, Shi-Rui Weng1, Ran-Ran Zhang1, Wen-Ka Zhu1*, Li Pi1,2*, and Chang-Jin Zhang1,3*
1High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2University of Science and Technology of China, Hefei 230026, China
3Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Cite this article:   
Xiu Yan, Wei-Li Zhen, Shi-Rui Weng et al  2021 Chin. Phys. Lett. 38 057304
Download: PDF(1086KB)   PDF(mobile)(0KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Atomically thin two-dimensional (2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photoresponse. For electronic devices, not only metals and high-performance semiconductors but also insulators and dielectric materials are highly desirable. Layered structures composed of 2D materials of different properties can be delicately designed as various useful heterojunction or homojunction devices, in which the designs on the same material (namely homojunction) are of special interest because preparation techniques can be greatly simplified and atomically seamless interfaces can be achieved. We demonstrate that the insulating pristine ZnPS$_{3}$, a ternary transition-metal phosphorus trichalcogenide, can be transformed into a highly conductive metal and an n-type semiconductor by intercalating Co and Cu atoms, respectively. The field-effect-transistor (FET) devices are prepared via an ultraviolet exposure lithography technique. The Co-ZnPS$_{3}$ device exhibits an electrical conductivity of $8\times10^{4}$ S/m, which is comparable to the conductivity of graphene. The Cu-ZnPS$_{3}$ FET reveals a current ON/OFF ratio of 10$^{5}$ and a mobility of $3\times10^{-2}$ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$. The realization of an insulator, a typical semiconductor and a metallic state in the same 2D material provides an opportunity to fabricate n-metal homojunctions and other in-plane electronic functional devices.
Received: 05 February 2021      Published: 02 May 2021
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0403600 and 2016YFA0300404), the National Natural Science Foundation of China (Grant Nos. 11874363, 11974356 and U1932216), and the Collaborative Innovation Program of Hefei Science Center, CAS (Grant No. 2019HSC-CIP002).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/5/057304       OR      https://cpl.iphy.ac.cn/Y2021/V38/I5/057304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiu Yan
Wei-Li Zhen
Shi-Rui Weng
Ran-Ran Zhang
Wen-Ka Zhu
Li Pi
and Chang-Jin Zhang
[1] Bae S H et al. 2019 Nat. Mater. 18 550
[2] Osada M and Sasaki T 2012 Adv. Mater. 24 210
[3] Gong Y et al. 2018 Nat. Nanotechnol. 13 294
[4] Susner M A et al. 2017 Adv. Mater. 29 1602852
[5] Brec R et al. 1987 J. Power Sources 20 205
[6] Lacroix P G et al. 1994 Science 263 658
[7] Ma X et al. 2020 Chem. Commun. 56 4603
[8] Ichimura K and Sano M 1991 Synth. Met. 45 203
[9] Takano Y et al. 2004 J. Magn. Magn. Mater. 272 E593
[10] Sourisseau C, Forgerit J P, and Mathey Y 1983 J. Phys. Chem. Solids 44 119
[11] Boucher F, Evain M, and Brec R 1994 J. Alloys Compd. 215 63
[12] Koski K J et al. 2012 J. Am. Chem. Soc. 134 13773
[13] Yao J et al. 2014 Nat. Commun. 5 5670
[14] Wu Z S et al. 2009 ACS Nano 3 411
[15] Prouzet E, Ouvrard G, and Brec R 1986 Mater. Res. Bull. 21 195
[16] Mayorga-Martinez C C et al. 2017 ACS Appl. Mater. & Interfaces 9 12563
[17] Acerce M, Voiry D, and Chhowalla M 2015 Nat. Nanotechnol. 10 313
[18] Ji J et al. 2016 Nat. Commun. 7 13352
[19] Ji Q et al. 2017 Nano Lett. 17 4908
[20] Radisavljevic B et al. 2011 Nat. Nanotechnol. 6 147
[21] Nasr J R et al. 2020 ACS Nano 14 15440
[22] Huang J et al. 2015 Nanoscale 7 4193
[23] Lin Y F et al. 2015 Adv. Mater. 27 6612
[24] Lin Y F et al. 2014 Adv. Mater. 26 3263
[25] Jenjeti R T et al. 2018 Sci. Rep. 8 8586
[26] Kumar R et al. 2019 J. Mater. Chem. C 7 324
[27] Jena D and Konar A 2007 Phys. Rev. Lett. 98 136805
[28] Bertolazzi S et al. 2019 Adv. Mater. 31 1806663
Viewed
Full text


Abstract