Chin. Phys. Lett.  2021, Vol. 38 Issue (4): 047201    DOI: 10.1088/0256-307X/38/4/047201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Non-Monotonic Evolution of Carrier Density and Mobility under Thermal Cycling Treatments in Dirac Semimetal Cd$_{3}$As$_{2}$ Microbelts
Zheng Chen1,2†, Min Wu1,2†, Yequn Liu3, Wenshuai Gao4, Yuyan Han1, Jianhui Zhou1*, Wei Ning1*, and Mingliang Tian1,4
1Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
2Department of Physics, University of Science and Technology of China, Hefei 230026, China
3Analytical Instrumentation Center, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
4Department of Physics, School of Physics and Materials Science, Anhui University, Hefei 230601, China
Cite this article:   
Zheng Chen, Min Wu, Yequn Liu et al  2021 Chin. Phys. Lett. 38 047201
Download: PDF(1991KB)   PDF(mobile)(3533KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Tunable carrier density plays a key role in the investigation of novel transport properties in three-dimensional topological semimetals. We demonstrate that the carrier density, as well as the mobility, of Dirac semimetal Cd$_{3}$As$_{2}$ nanoplates can be effectively tuned via in situ thermal treatment at 350 K for one hour, resulting in non-monotonic evolution by virtue of the thermal cycling treatments. The upward shift of Fermi level relative to the Dirac nodes blurs the surface Fermi-arc states, accompanied by an anomalous phase shift in the oscillations of bulk states, due to a change in the topology of the electrons. Meanwhile, the oscillation peaks of bulk longitudinal magnetoresistivity shift at high fields, due to their coupling to the oscillations of the surface Fermi-arc states. Our work provides a thermal control mechanism for the manipulation of quantum states in Dirac semimetal Cd$_{3}$As$_{2}$ at high temperatures, via their carrier density.
Received: 18 December 2020      Published: 06 April 2021
PACS:  72.15.Eb (Electrical and thermal conduction in crystalline metals and alloys)  
  72.90.+y (Other topics in electronic transport in condensed matter)  
  81.16.Nd (Micro- and nanolithography)  
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2016YFA0401003), and the National Natural Science Foundation of China (Grant Nos. 11804340, 11774353, U19A2093, and U1732274), and the CAS/SAFEA International Partnership Program for Creative Research Teams of China.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/4/047201       OR      https://cpl.iphy.ac.cn/Y2021/V38/I4/047201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zheng Chen
Min Wu
Yequn Liu
Wenshuai Gao
Yuyan Han
Jianhui Zhou
Wei Ning
and Mingliang Tian
[1] Wang Z J et al. 2013 Phys. Rev. B 88 125427
[2] Liu Z K et al. 2014 Nat. Mater. 13 677
[3] Borisenko S et al. 2014 Phys. Rev. Lett. 113 027603
[4] He L P et al. 2014 Phys. Rev. Lett. 113 246402
[5] Liang T et al. 2015 Nat. Mater. 14 280
[6] Feng J Y et al. 2015 Phys. Rev. B 92 081306
[7] Li C Z et al. 2015 Nat. Commun. 6 10137
[8] Li H et al. 2016 Nat. Commun. 7 10301
[9] Wu M et al. 2018 Phys. Rev. B 98 161110
[10] Moll P J W et al. 2016 Nature 535 266
[11] Zheng G L et al. 2017 Phys. Rev. B 96 121407
[12] Novoselov K S et al. 2004 Science 306 666
[13] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[14] Chen J et al. 2011 Phys. Rev. B 83 241304
[15] Yoshimi R et al. 2015 Nat. Commun. 6 6627
[16] Ye J T et al. 2010 Nat. Mater. 9 125
[17] Kong D et al. 2011 Nat. Nanotechnol. 6 705
[18] Yuan H et al. 2011 Nano Lett. 11 2601
[19] Shimizu S et al. 2012 Phys. Rev. B 86 045319
[20] Cheng P H et al. 2016 New J. Phys. 18 083003
[21] Xiao X et al. 2015 Sci. Rep. 5 7898
[22] Pan H, Wu M M, Liu Y and Yang S A 2015 Sci. Rep. 5 14639
[23] MN A et al. 2014 Inorg. Chem. 53 4062
[24] Li C Z et al. 2016 ACS Nano 10 6020
[25] Zhang C et al. 2017 Nat. Commun. 8 13741
[26] Wang Q et al. 2017 Nano Lett. 17 834
[27] Potter A C, Kimchi I and Vishwanath A 2014 Nat. Commun. 5 5161
[28] Globisch B et al. 2016 AIP Adv. 6 125011
[29] Okuda T et al. 2014 Appl. Phys. Express 7 085501
[30] Wang C M, Lu H Z and Shen S Q 2016 Phys. Rev. Lett. 117 077201
[31]Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge University Press)
[32] Murakawa H et al. 2013 Science 342 1490
[33] Arushanov E 1992 Prog. Cryst. Growth Charact. Mater. 25 131
[34] Blom F A P and Gelten M J 1979 Phys. Rev. B 19 2411
[35] EK A 1980 Prog. Cryst. Growth Charact. Mater. 3 211
[36] Crassee I et al. 2018 Phys. Rev. B 97 125204
[37] Ma J, Wei S H, Gessert T A and Chin K K 2011 Phys. Rev. B 83 245207
Viewed
Full text


Abstract