CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Zintl Phase BaAgSb: Low Thermal Conductivity and High Performance Thermoelectric Material in Ab Initio Calculation |
Shao-Fei Wang1,2,3, Zhi-Gang Zhang4,5, Bao-Tian Wang1,2,6, Jun-Rong Zhang1,2,3*, and Fang-Wei Wang2,3,4,5* |
1Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 2Spallation Neutron Source Science Center, Dongguan 523808, China 3School of Nuclear Sciences and Technology, University of Chinese Academy of Sciences, Beijing 100049, China 4Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 5Songshan Lake Material Laboratory, Dongguan 523808, China 6Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
|
|
Cite this article: |
Shao-Fei Wang, Zhi-Gang Zhang, Bao-Tian Wang et al 2021 Chin. Phys. Lett. 38 046301 |
|
|
Abstract Thermoelectric materials are critical parts in thermal electric devices. Here, Zintl phase BaAgSb in space group of P6$_3$/mmc is reported as a promising thermoelectric material in density function theory. The anisotropic lattice thermal conductivity and phonon transport properties are investigated in theory. The strong phonon-phonon scattering in BaAgSb exhibits ultra-low lattice thermal conductivity of 0.59 W$\cdot$m$^{-1}$$\cdot$K$^{-1}$ along $c$-axis at 800 K, and high thermoelectric performance ZT = 0.94 at 400 K. The mix of covalent and ionic bond supports high carrier mobility and low thermal conductivity. The unusual features make BaAgSb a potential thermoelectric material.
|
|
Received: 29 January 2021
Published: 06 April 2021
|
|
|
Fund: Supported by the National Key R&D Program of China (Grant Nos. 2016YFA0401503 and 2017YFA0403700), the National Natural Science Foundation of China (Grant Nos. 11675255, U1932220, 11675195, and U1932220), the Key Research Program of Frontier Sciences, CAS (Grant No. 292016YQYKXJ00135), and the Program of State Key Laboratory (Grant No. 12074381). |
|
|
[1] | Kauzlarich S M, Brown S R and Snyder G J 2007 Dalton Trans. 2007 2099 |
[2] | Toberer E S, Zevalkink A, Crisosto N and Snyder G J 2010 Adv. Funct. Mater. 20 4375 |
[3] | Ortiz B R, Gorai P, Krishna L, Mow R, Lopez A, McKinney R, Stevanovic V and Toberer E S 2017 J. Mater. Chem. A 8 4036 |
[4] | Ortiz B R, Gorai P, Stevanovic V and Toberer E S 2017 Chem. Mater. 29 4523 |
[5] | Gayner C and Kar K K 2016 Prog. Mater. Sci. 83 330 |
[6] | Yang D D, Tong H, Zhou L J and Miao X S 2017 Chin. Phys. Lett. 34 127301 |
[7] | Feng B, Li G Q, Hu X M, Liu P H, Li R S, Zhang Y L, Li Y W, He Z and Fan X A 2020 Chin. Phys. Lett. 37 037201 |
[8] | Zhang X, Liu J, Li Y, Su W B, Li J C, Zhu Y H, Li M K, Wang C M and Wang C L 2015 Chin. Phys. Lett. 32 037201 |
[9] | Brown S R, Kauzlarich S M, Gascoin F and Snyder G J 2006 Chem. Mater. 18 1873 |
[10] | Zhang W M, Chen C, Yao H H, Xue W H, Li S, Bai F X, Huang Y F, Li X, Lin X, Cao F et al. 2020 Chem. Mater. 32 6983 |
[11] | Chen C, Xue W H, Li S, Zhang Z W, Li X F, Wang X Y, Liu Y J, Sui J H, Liu X J, Cao F et al. 2019 Proc. Natl. Acad. Sci. USA 116 2831 |
[12] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[13] | Jochen H, Gustavo E S and Matthias E 2003 J. Chem. Phys. 118 8207 |
[14] | Laurent C, Atsushi T, Isao T and Gilles H 2011 Phys. Rev. B 84 094302 |
[15] | Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747 |
[16] | Madsen Georg K H and Singh David J 2006 Comput. Phys. Commun. 175 67 |
[17] | Li X Y, Liu P F, Zhao E Y, Zhang Z G, Guidi T, Le M D, Avdeev M, Ikeda K, Otomo T, Kofu M et al. 2020 Nat. Commun. 11 942 |
[18] | Ying P J, Liu X H, Fu C G, Yue X Q, Xie H H, Zhao X B, Zhang W Q and Zhu T J 2015 Chem. Mater. 27 909 |
[19] | Lu B Y, Liu C C, Lu S, Xu J K, Jiang F X, Li Y Z and Zhang Z 2010 Chin. Phys. Lett. 27 057201 |
[20] | Zhan S P, Zheng L, Xiao Y and Zhao L D 2020 Chem. Mater. 32 10348 |
[21] | Tan X J, Wang L, Shao H Z, Yue S, Xu J T, Liu G Q, Jiang H C and Jiang J 2017 Adv. Energy Mater. 7 1700076 |
[22] | Samanta M, Pal K, Waghmare U V and Biswas K 2020 Angew. Chem. 132 4852 |
[23] | Chang C, Wu M H, He D H, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q and Zhao L D 2018 Science 360 778 |
[24] | Zhao L D, He J P, Berardan D, Lin Y H, Li J F, Nan C W and Dragoe N 2014 Energy & Environ. Sci. 7 2900 |
[25] | Wang C, Zheng C B and Gao G Y 2020 J. Phys. Chem. C 124 6536 |
[26] | Wu Y Y, Zhu X L, Yang H Y, Wang Z G, Li Y H and Wang B T 2020 Chin. Phys. B 29 087202 |
[27] | Zhu X L, Liu P F, Zhang J R, Zhang P, Zhou W X, Xie G F and Wang B T 2019 Nanoscale 11 19923 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|