NUCLEAR PHYSICS |
|
|
|
|
Constraining Isovector Nuclear Interactions with Giant Dipole Resonance and Neutron Skin in $^{208}$Pb from a Bayesian Approach |
Jun Xu1,2* |
1The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China 2Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
|
|
Cite this article: |
Jun Xu 2021 Chin. Phys. Lett. 38 042101 |
|
|
Abstract The remaining uncertainties in relation to isovector nuclear interactions call for reliable experimental measurements of isovector probes in finite nuclei. Based on the Bayesian analysis, although neutron-skin thickness data or isovector giant dipole resonance data in $^{208}$Pb can constrain only one isovector interaction parameter, correlations among other parameters can also be built. Using combined data for both the neutron-skin thickness and the isovector giant dipole resonance helps to significantly constrain all isovector interaction parameters; as such, it serves as a useful methodology for future research.
|
|
Received: 17 December 2020
Published: 06 April 2021
|
|
PACS: |
21.65.Ef
|
(Symmetry energy)
|
|
21.60.Jz
|
(Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))
|
|
21.10.Gv
|
(Nucleon distributions and halo features)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11922514). |
|
|
[1] | Baran V, Colonna M, Greco V and Di Toro M 2005 Phys. Rep. 410 335 |
[2] | Steiner A W, Prakash M, Lattimer J M and Ellis P J 2005 Phys. Rep. 411 325 |
[3] | Lattimer J M and Prakash M 2007 Phys. Rep. 442 109 |
[4] | Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113 |
[5] | Li B A and Han X 2013 Phys. Lett. B 727 276 |
[6] | Oertel M, Hempel M, Klähn T and Typel S 2017 Rev. Mod. Phys. 89 015007 |
[7] | Li B A, Cai B J, Chen L W and Xu J 2018 Prog. Part. Nucl. Phys. 99 29 |
[8] | Xu C, Li B A and Chen L W 2010 Phys. Rev. C 82 054607 |
[9] | Trippa L, Colò G and Vigezzi E 2008 Phys. Rev. C 77 061304(R) |
[10] | Reinhard P G and Nazarewicz W 2010 Phys. Rev. C 81 051303(R) |
[11] | Piekarewicz J, Agrawal B K, Colò G, Nazarewicz W, Paar N, Reinhard P G, Roca-Maza X and Vretenar D 2012 Phys. Rev. C 85 041302(R) |
[12] | Vretenar D, Niu Y F, Paar N and Meng J 2012 Phys. Rev. C 85 044317 |
[13] | Roca-Maza X, Brenna M, Colò G, Centelles M, Vi N X, Agrawal B K, Paar N, Vretenar D and Piekarewicz J 2013 Phys. Rev. C 88 024316 |
[14] | Colò G, Garg U and Sagawa H 2014 Eur. Phys. J. A 50 26 |
[15] | Roca-Maza X, Vi N X, Centelles M, Agrawal B K, Colò G, Paar N, Piekarewicz J and Vretenar D 2015 Phys. Rev. C 92 064304 |
[16] | Zhang Z and Chen L W 2015 Phys. Rev. C 92 031301(R) |
[17] | Zheng H, Burrello S, Colonna M and Baran V 2016 Phys. Rev. C 94 014313 |
[18] | Xu J and Qin W T 2020 Phys. Rev. C 102 024306 |
[19] | Zhang Z and Chen L W 2016 Phys. Rev. C 93 034335 |
[20] | Kong H Y, Xu J, Chen L W, Li B A and Ma Y G 2017 Phys. Rev. C 95 034324 |
[21] | Brown B A 2000 Phys. Rev. Lett. 85 5296 |
[22] | Typel S and Brown B A 2001 Phys. Rev. C 64 027302 |
[23] | Horowitz C J and Piekarewicz J 2001 Phys. Rev. Lett. 86 5647 |
[24] | Furnstahl R J 2002 Nucl. Phys. A 706 85 |
[25] | Todd-Rutel B G and Piekarewicz J 2005 Phys. Rev. Lett. 95 122501 |
[26] | Centelles M, Roca-Maza X, Viñas X and Warda M 2009 Phys. Rev. Lett. 102 122502 |
[27] | Zhang Z and Chen L W 2013 Phys. Lett. B 726 234 |
[28] | Agrawal B K, Malik T, De J N and Samaddar S K 2020 arXiv:2006.05758 [nucl-th] |
[29] | Behera D, Tripathy S K, Routray T R and Behera B 2020 Phys. Scr. 95 105301 |
[30] | Thiel M, Sfienti C, Piekarewicz J, Horowitz C J and Vanderhaeghen M 2019 J. Phys. G 46 093003 |
[31] | Burgio G F and Vidaña I 2020 Universe 6 119 |
[32] | Vi X, Centelles M, Roca-Maza X and Warda M 2014 Eur. Phys. J. A 50 27 |
[33] | Roca-Maza X and Paar N 2018 Prog. Part. Nucl. Phys. 101 96 |
[34] | Chen L W, Li B A, Ko C M and Xu J 2010 Phys. Rev. C 82 024321 |
[35] | Chabanat E, Bonche P, Haensel P, Meyer J and Schaeffer R 1997 Nucl. Phys. A 627 710 |
[36] | Vautherin D and Brink D M 1972 Phys. Rev. C 5 626 |
[37] | Reinhard P G 1991 Computational Nuclear Physics 1: Nuclear Structure ed Langanke K, Maruhn J A and Koonin S E (New York: Springer-Verlag) chap 2 p 209 |
[38] | Colò G, Cao L, Van Gia N and Capelli L 2013 Comput. Phys. Commun. 184 142 |
[39] | Dietrich S S and Berman B L 1988 At. Data Nucl. Data Tables 38 199 |
[40] | Tamii A, Poltoratska I, vonNeumann-Cosel P et al. 2011 Phys. Rev. Lett. 107 062502 |
[41] | Zenihiro J, Sakaguchi H, Murakami T, Yosoi M, Yasuda Y, Terashima S, Iwao Y, Takeda H, Itoh M, Yoshida H P and Uchida M 2010 Phys. Rev. C 82 044611 |
[42] | Friedman E 2012 Nucl. Phys. A 896 46 |
[43] | Klos B et al. 2007 Phys. Rev. C 76 014311 |
[44] | Brown B A, Shen G, Hillhouse G C, Meng J and Trzcinska A 2007 Phys. Rev. C 76 034305 |
[45] | Tarbert C M et al. 2014 Phys. Rev. Lett. 112 242502 |
[46] | Abrahamyan S et al. 2012 Phys. Rev. Lett. 108 112502 |
[47] | Xu J, Xie W J and Li B A 2020 Phys. Rev. C 102 044316 |
[48] | Xu J, Zhou J, Zhang Z, Xie W J and Li B A 2020 Phys. Lett. B 810 135820 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|