Chin. Phys. Lett.  2021, Vol. 38 Issue (4): 042101    DOI: 10.1088/0256-307X/38/4/042101
NUCLEAR PHYSICS |
Constraining Isovector Nuclear Interactions with Giant Dipole Resonance and Neutron Skin in $^{208}$Pb from a Bayesian Approach
Jun Xu1,2*
1The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
2Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Cite this article:   
Jun Xu 2021 Chin. Phys. Lett. 38 042101
Download: PDF(1281KB)   PDF(mobile)(1262KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The remaining uncertainties in relation to isovector nuclear interactions call for reliable experimental measurements of isovector probes in finite nuclei. Based on the Bayesian analysis, although neutron-skin thickness data or isovector giant dipole resonance data in $^{208}$Pb can constrain only one isovector interaction parameter, correlations among other parameters can also be built. Using combined data for both the neutron-skin thickness and the isovector giant dipole resonance helps to significantly constrain all isovector interaction parameters; as such, it serves as a useful methodology for future research.
Received: 17 December 2020      Published: 06 April 2021
PACS:  21.65.Ef (Symmetry energy)  
  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
  21.10.Gv (Nucleon distributions and halo features)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11922514).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/4/042101       OR      https://cpl.iphy.ac.cn/Y2021/V38/I4/042101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun Xu
[1] Baran V, Colonna M, Greco V and Di Toro M 2005 Phys. Rep. 410 335
[2] Steiner A W, Prakash M, Lattimer J M and Ellis P J 2005 Phys. Rep. 411 325
[3] Lattimer J M and Prakash M 2007 Phys. Rep. 442 109
[4] Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113
[5] Li B A and Han X 2013 Phys. Lett. B 727 276
[6] Oertel M, Hempel M, Klähn T and Typel S 2017 Rev. Mod. Phys. 89 015007
[7] Li B A, Cai B J, Chen L W and Xu J 2018 Prog. Part. Nucl. Phys. 99 29
[8] Xu C, Li B A and Chen L W 2010 Phys. Rev. C 82 054607
[9] Trippa L, Colò G and Vigezzi E 2008 Phys. Rev. C 77 061304(R)
[10] Reinhard P G and Nazarewicz W 2010 Phys. Rev. C 81 051303(R)
[11] Piekarewicz J, Agrawal B K, Colò G, Nazarewicz W, Paar N, Reinhard P G, Roca-Maza X and Vretenar D 2012 Phys. Rev. C 85 041302(R)
[12] Vretenar D, Niu Y F, Paar N and Meng J 2012 Phys. Rev. C 85 044317
[13] Roca-Maza X, Brenna M, Colò G, Centelles M, Vi N X, Agrawal B K, Paar N, Vretenar D and Piekarewicz J 2013 Phys. Rev. C 88 024316
[14] Colò G, Garg U and Sagawa H 2014 Eur. Phys. J. A 50 26
[15] Roca-Maza X, Vi N X, Centelles M, Agrawal B K, Colò G, Paar N, Piekarewicz J and Vretenar D 2015 Phys. Rev. C 92 064304
[16] Zhang Z and Chen L W 2015 Phys. Rev. C 92 031301(R)
[17] Zheng H, Burrello S, Colonna M and Baran V 2016 Phys. Rev. C 94 014313
[18] Xu J and Qin W T 2020 Phys. Rev. C 102 024306
[19] Zhang Z and Chen L W 2016 Phys. Rev. C 93 034335
[20] Kong H Y, Xu J, Chen L W, Li B A and Ma Y G 2017 Phys. Rev. C 95 034324
[21] Brown B A 2000 Phys. Rev. Lett. 85 5296
[22] Typel S and Brown B A 2001 Phys. Rev. C 64 027302
[23] Horowitz C J and Piekarewicz J 2001 Phys. Rev. Lett. 86 5647
[24] Furnstahl R J 2002 Nucl. Phys. A 706 85
[25] Todd-Rutel B G and Piekarewicz J 2005 Phys. Rev. Lett. 95 122501
[26] Centelles M, Roca-Maza X, Viñas X and Warda M 2009 Phys. Rev. Lett. 102 122502
[27] Zhang Z and Chen L W 2013 Phys. Lett. B 726 234
[28] Agrawal B K, Malik T, De J N and Samaddar S K 2020 arXiv:2006.05758 [nucl-th]
[29] Behera D, Tripathy S K, Routray T R and Behera B 2020 Phys. Scr. 95 105301
[30] Thiel M, Sfienti C, Piekarewicz J, Horowitz C J and Vanderhaeghen M 2019 J. Phys. G 46 093003
[31] Burgio G F and Vidaña I 2020 Universe 6 119
[32] Vi X, Centelles M, Roca-Maza X and Warda M 2014 Eur. Phys. J. A 50 27
[33] Roca-Maza X and Paar N 2018 Prog. Part. Nucl. Phys. 101 96
[34] Chen L W, Li B A, Ko C M and Xu J 2010 Phys. Rev. C 82 024321
[35] Chabanat E, Bonche P, Haensel P, Meyer J and Schaeffer R 1997 Nucl. Phys. A 627 710
[36] Vautherin D and Brink D M 1972 Phys. Rev. C 5 626
[37]Reinhard P G 1991 Computational Nuclear Physics 1: Nuclear Structure ed Langanke K, Maruhn J A and Koonin S E (New York: Springer-Verlag) chap 2 p 209
[38] Colò G, Cao L, Van Gia N and Capelli L 2013 Comput. Phys. Commun. 184 142
[39] Dietrich S S and Berman B L 1988 At. Data Nucl. Data Tables 38 199
[40] Tamii A, Poltoratska I, vonNeumann-Cosel P et al. 2011 Phys. Rev. Lett. 107 062502
[41] Zenihiro J, Sakaguchi H, Murakami T, Yosoi M, Yasuda Y, Terashima S, Iwao Y, Takeda H, Itoh M, Yoshida H P and Uchida M 2010 Phys. Rev. C 82 044611
[42] Friedman E 2012 Nucl. Phys. A 896 46
[43] Klos B et al. 2007 Phys. Rev. C 76 014311
[44] Brown B A, Shen G, Hillhouse G C, Meng J and Trzcinska A 2007 Phys. Rev. C 76 034305
[45] Tarbert C M et al. 2014 Phys. Rev. Lett. 112 242502
[46] Abrahamyan S et al. 2012 Phys. Rev. Lett. 108 112502
[47] Xu J, Xie W J and Li B A 2020 Phys. Rev. C 102 044316
[48] Xu J, Zhou J, Zhang Z, Xie W J and Li B A 2020 Phys. Lett. B 810 135820
Viewed
Full text


Abstract