Chin. Phys. Lett.  2021, Vol. 38 Issue (2): 027401    DOI: 10.1088/0256-307X/38/2/027401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure
Jiayu Ma1,2†, Junlin Kuang1†, Wenwen Cui1*, Ju Chen1, Kun Gao1, Jian Hao1*, Jingming Shi1, and Yinwei Li1
1Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
2CW Chu College, Jiangsu Normal University, Xuzhou 221116, China
Cite this article:   
Jiayu Ma, Junlin Kuang, Wenwen Cui et al  2021 Chin. Phys. Lett. 38 027401
Download: PDF(3425KB)   PDF(mobile)(1130KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The recent observation of high critical temperature $T_{\rm c}$ in lanthanum and Yttrium hydrides confirms the key role of hydrogen cage (H-cage) in determining high superconductivity. Here, we present a new class of metastable H$_{12}$ clathrate structures based on the icosahedral $cI24$-Na that can be stabilized by incorporation of metal elements. Analysis shows that the charge transfer from metal atoms to H atoms contributes to forming the H$_{12}$ clathrate. Nine dynamically stable structures are identified to exhibit superconductivity, and a maximum $T_{\rm c}$ of 28 K is found in voids-doped Mo$_{6}$H$_{24}$. Calculations reveal that the low $T_{\rm c}$ is attributed to the weak interaction between H atoms in each cage due to the long H–H distance. The current results provide a possible route to design H-cage containing superconductors.
Received: 08 October 2020      Published: 27 January 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  74.25.Dw (Superconductivity phase diagrams)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 12074154, 11722433, 11804128, 11804129, and 11904142), and the Qing Lan Project of Jiangsu Province.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/2/027401       OR      https://cpl.iphy.ac.cn/Y2021/V38/I2/027401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiayu Ma
Junlin Kuang
Wenwen Cui
Ju Chen
Kun Gao
Jian Hao
Jingming Shi
and Yinwei Li
[1] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[2] Cui W and Li Y 2019 Chin. Phys. B 28 107104
[3] Zhang L, Wang Y, Lv J and Ma Y 2017 Nat. Rev. Mater. 2 17005
[4] Drozdov A, Eremets M, Troyan I, Ksenofontov V and Shylin S 2015 Nature 525 73
[5] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528
[6] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 27001
[7] Wang H, Tse J, Tanaka K, Iitaka T and ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463
[8] Li Y, Hao J, Liu H, Tse J, Wang Y and Ma Y 2015 Sci. Rep. 5 9948
[9] Troyan I, Semenok D, Kvashnin A, Ivanova A, Prakapenka V, Greenberg E, Gavriliuk A, Lyubutin I, Struzhkin V and Oganov A 2019 arXiv:1908.01534 [cond-mat.supr-con]
[10] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001
[11] Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
[12] Papaconstantopoulos D A, Mehl M J and Chang P H 2020 Phys. Rev. B 101 060506
[13] Durajski A P, Szczesniak R, Li Y, Chongze W J H C, Wang C and Cho J H 2020 Phys. Rev. B 101 214501
[14] Elatresh S F, Timusk T and Nicol E J 2020 Phys. Rev. B 102 024501
[15] Kostrzewa M, Szczȩśniak K M, Durajski A P and Szczȩśniak R 2020 Sci. Rep. 10 1
[16] Errea I, Belli F, Monacelli L, Sanna A, Koretsune T, Tadano T, Bianco R, Calandra M, Arita R, Mauri F and Flores-Livas J A 2020 Nature 578 66
[17] Feng X L, Zhang J R, Gao G Y, Liu H Y and Wang H 2015 RSC Adv. 5 59292
[18] Salke N P, Davari E M M, Zhang Y, Kruglov I A, Zhou J, Wang Y, Greenberg E, Prakapenka V B, Liu J, Oganov A R and Lin J F 2019 Nat. Commun. 10 1
[19] Peña-Alvarez M, Binns J, Hermann A, Kelsall L C, Dalladay-Simpson P, Gregoryanz E and Howie R T 2019 Phys. Rev. B 100 184109
[20] Zhou D, Semenok D V, Duan D, Xie H, Chen W, Huang X, Li X, Liu B, Oganov A R and Cui T 2020 Sci. Adv. 6 eaax6849
[21] Kvashnin A G, Semenok D V, Kruglov I A, Wrona I A and Oganov A R 2018 ACS Appl. Mater. & Interfaces 10 43809
[22] Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A and Oganov A R 2020 Mater. Today 33 36
[23] Semenok D V, Kvashnin A G, Kruglov I A and Oganov A R 2018 J. Phys. Chem. Lett. 9 1920
[24] Sun Y, Lv J, Xie Y, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 97001
[25] Li Y, Wang Y, Pickard C J, Needs R J, Wang Y and Ma Y 2015 Phys. Rev. Lett. 114 125501
[26] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[27] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[28] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
Viewed
Full text


Abstract