Chin. Phys. Lett.  2021, Vol. 38 Issue (2): 027201    DOI: 10.1088/0256-307X/38/2/027201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Topological-Defect-Induced Superstructures on Graphite Surface
Zi-Lin Ruan , Zhen-Liang Hao , Hui Zhang , Shi-Jie Sun , Yong Zhang , Wei Xiong , Xing-Yue Wang , Jian-Chen Lu*, and Jin-Ming Cai 
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650000, China
Cite this article:   
Zi-Lin Ruan , Zhen-Liang Hao , Hui Zhang  et al  2021 Chin. Phys. Lett. 38 027201
Download: PDF(4304KB)   PDF(mobile)(4367KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Topological defects in graphene induce structural and electronic modulations. Knowing exact nature of broken-symmetry states around the individual atomic defects of graphene is very important for understanding the electronic properties of this material. We investigate structural dependence on localized electronic states in the vicinity of topological defects on a highly oriented pyrolytic graphite (HOPG) surface, using scanning tunneling microscopy and spectroscopy. Several inherent topological defects on the HOPG surface and the local density of states surrounding them are explored, visualized as scattering wave-related ($\sqrt{3} \times \sqrt{3}$) R30$^{\circ}$ superstructures and honeycomb superstructures. In addition, the superstructures observed near the grain boundary have a much higher decay length at specific sites than that reported previously, indicating far greater electron scattering on the quasi-periodic grain boundary.
Received: 27 August 2020      Published: 27 January 2021
PACS:  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.22.Pr (Electronic structure of graphene)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11674136 and 61901200), Yunnan Province for Recruiting High-Caliber Technological Talents (Grant No. 1097816002), Reserve Talents for Yunnan Young and Middle Aged Academic and Technical Leaders (Grant No. 2017HB010), the Yunnan Province Science and Technology Plan Project (Grant No. 2019FD041), the China Postdoctoral Science Foundation, and the Yunnan Province Postdoctoral Science Foundation.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/2/027201       OR      https://cpl.iphy.ac.cn/Y2021/V38/I2/027201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zi-Lin Ruan 
Zhen-Liang Hao 
Hui Zhang 
Shi-Jie Sun 
Yong Zhang 
Wei Xiong 
Xing-Yue Wang 
Jian-Chen Lu
and Jin-Ming Cai 
[1] Ziatdinov M, Fujii S, Kusakabe K et al. 2013 Phys. Rev. B 87 115427
[2] Yang B, Xu H, Lu J et al. 2014 J. Am. Chem. Soc. 136 12041
[3] Xu W Y, Zhang L Z, Huang L et al. 2019 Chin. Phys. B 28 046801
[4] Wu L, Hou T, Li Y et al. 2013 J. Phys. Chem. C 117 17066
[5] Vicarelli L, Heerema S J, Dekker C et al. 2015 ACS Nano 9 3428
[6] Hollen S M, Tjung S J, Mattioli K R et al. 2016 J. Phys.: Condens. Matter 28 034003
[7] Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26
[8] Rehman M U, Hua C and Lu Y 2020 Chin. Phys. B 29 057304
[9] Simonis P, Goffaux C, Thiry P A et al. 2002 Surf. Sci. 511 319
[10] Sakai K I, Takai K, Fukui K I et al. 2010 Phys. Rev. B 81 235417
[11] Luican-Mayer A, Barrios-Vargas J E, Falkenberg J T et al. 2016 2D Mater. 3 031005
[12] Long F, Yasaei P, Sanoj R et al. 2016 ACS Appl. Mater. & Interfaces 8 18360
[13] Li S Y, Ren Y N, Liu Y W et al. 2019 2D Mater. 6 031005
[14] Li J, Lin L, Rui D et al. 2017 ACS Nano 11 4641
[15] Kotakoski J, Krasheninnikov A V, Kaiser U et al. 2011 Phys. Rev. Lett. 106 105505
[16] Sun Z P, Hua C Q, Liu X L et al. 2020 Phys. Rev. B 101 155114
[17] Zhang W, Ju Z and Wu W 2019 Phys. Rev. B 100 115120
[18] Ugeda M M, Brihuega I, Hiebel F et al. 2012 Phys. Rev. B 85 121402
[19] Cervenka J and Flipse C F J 2009 Phys. Rev. B 79 195429
[20] Cervenka J, Katsnelson M I and Flipse C F J 2009 Nat. Phys. 5 840
[21] Gargiulo F and Yazyev O V 2014 Nano Lett. 14 250
[22] Gunlycke D and White C T 2011 Phys. Rev. Lett. 106 136806
[23] Lahiri J, Lin Y, Bozkurt P et al. 2010 Nat. Nanotechnol. 5 326
[24] Meyer J C, Kisielowski C, Erni R et al. 2008 Nano Lett. 8 3582
[25] Yazyev O V and Louie S G 2010 Phys. Rev. B 81 195420
[26] Park J, He G, Feenstra R M et al. 2013 Nano Lett. 13 3269
[27] López J C M, Passeggi M C G and Ferrón J 2008 Surf. Sci. 602 671
[28] Niimi Y, Matsui T, Kambara H et al. 2006 Phys. Rev. B 73 085421
[29] Ziatdinov M, Fujii S, Kusakabe K et al. 2014 Phys. Rev. B 89 155405
[30] Rutter G M, Crain J N, Guisinger N P et al. 2007 Science 317 219
[31] Yan H, Liu C C, Bai K K et al. 2013 Appl. Phys. Lett. 103 143120
[32] Liu H, Chen J, Yu H et al. 2015 Nat. Commun. 6 8180
[33] Iqbal M Z, Kelekci O, Iqbal M W et al. 2014 New J. Phys. 16 083020
[34] Jung M, Sohn S D, Park J et al. 2016 Sci. Rep. 6 22570
[35] Mahmood A, Mallet P and Veuillen J Y 2012 Nanotechnology 23 055706
[36] Mallet P, Brihuega I, Bose S et al. 2012 Phys. Rev. B 86 045444
[37] Tesch J, Leicht P, Blumenschein F et al. 2017 Phys. Rev. B 95 075429
[38] Koepke J C, Wood J D, Estrada D et al. 2013 ACS Nano 7 75
[39] Yang H, Mayne A J, Boucherit M et al. 2010 Nano Lett. 10 943
[40] Wahl P, Schneider M A, Diekhoner L et al. 2003 Phys. Rev. Lett. 91 106802
Viewed
Full text


Abstract