Chin. Phys. Lett.  2021, Vol. 38 Issue (2): 026501    DOI: 10.1088/0256-307X/38/2/026501
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Scaling Behavior between Heat Capacity and Thermal Expansion in Solids
Meibo Tang*, Xiuhong Pan , Minghui Zhang , and Haiqin Wen 
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Cite this article:   
Meibo Tang, Xiuhong Pan , Minghui Zhang  et al  2021 Chin. Phys. Lett. 38 026501
Download: PDF(1043KB)   PDF(mobile)(1061KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We experimentally analyze the heat capacity and thermal expansion of reference solids in a wide temperature range from several Kelvin to melting temperature, and establish a universal double-linear relation between the experimental heat capacity $C_{\rm p}$ and thermal expansion $\beta$, which is different from the previous models. The universal behavior between heat capacity and thermal expansion is important to predict the thermodynamic parameters at constant pressure, and is helpful for understanding the nature of thermal properties in solids.
Received: 02 October 2020      Published: 27 January 2021
PACS:  65.43.-b  
  65.40.Ba (Heat capacity)  
  65.40.De (Thermal expansion; thermomechanical effects)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 51001113).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/2/026501       OR      https://cpl.iphy.ac.cn/Y2021/V38/I2/026501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Meibo Tang
Xiuhong Pan 
Minghui Zhang 
and Haiqin Wen 
[1]Grimvall G 1999 Thermophysical Properties of Materials (Amsterdam: Elsevier)
[2] Drebushchak V A 2020 J. Therm. Anal. Calorim. 142 1097
[3] Debye P 1912 Ann. Phys. 344 789
[4] Einstein A 1907 Ann. Phys. 327 180
[5] Andritsos E I, Zarkadoula E, Phillips A E, Dove M T, Walker C J, Brazhkin V V and Trachenko K 2013 J. Phys.: Condens. Matter 25 235401
[6] Lewis G N 1907 J. Am. Chem. Soc. 29 1165
[7] Grüneisen E 1912 Ann. Phys. 344 257
[8] Bodryakov V Y 2015 High Temp. 53 643
[9] Bodryakov V Y and Babintsev Y N 2015 Phys. Solid State 57 1264
[10] Bodryakov V Y 2020 Inorg. Mater. 56 633
[11] Askerov B M and Cankurtaran M 1994 Phys. Status Solidi B 185 341
[12] Drebushchak V A and Turkin A I 2001 J. Therm. Anal. Calorim. 65 745
[13] Drebushchak V A 2009 J. Therm. Anal. Calorim. 95 313
[14] Garai J 2006 Calphad 30 354
[15] Raju S, Sivasubramanian K and Mohandas E 2001 Scr. Mater. 44 269
[16] Tang M B, Liu X C, Zhang M H, Pan X H and Wen H Q 2020 J. Phys. Chem. A 124 6119
[17] White G K and Minges M L 1997 Int. J. Thermophys. 18 1269
[18] Bodryakov V Y 2016 High Temp. 54 316
[19] Anderson O L, Isaak D and Oda H 1992 Rev. Geophys. 30 57
[20] Bodryakov V Y 2014 High Temp. 52 840
[21] Bodryakov V Y and Bykov A A 2015 Glass Ceram. 72 67
[22] Povzner A A and Filanovich A N 2011 High Temp. 49 674
[23] Bodryakov V Y 2018 High Temp. 56 177
[24] Kroeger F R and Swenson C A 1977 J. Appl. Phys. 48 853
[25] Stedman R, Almqvist L and Nilsson G 1967 Phys. Rev. 162 549
[26] Lu X G, Selleby M and Sundman B 2005 Acta Mater. 53 2259
[27] Bodryakov V Y 2015 Inorg. Mater. 51 172
[28] Bodryakov V Y 2015 Tech. Phys. 60 381
[29] Bodryakov V Y 2014 Phys. Solid State 56 2359
[30]https://www.webelements.com
[31]Tari A 2003 The Specific Heat of Matter at Low Temperatures (London: Imperial College Press)
[32] Cowley R A 1968 Rep. Prog. Phys. 31 123
[33] Foreman A J E 1962 Proc. Phys. Soc. 79 1124
[34] Stern E A 1958 Phys. Rev. 111 786
Viewed
Full text


Abstract