Chin. Phys. Lett.  2021, Vol. 38 Issue (2): 026401    DOI: 10.1088/0256-307X/38/2/026401
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Self-Similarity Breaking: Anomalous Nonequilibrium Finite-Size Scaling and Finite-Time Scaling
Weilun Yuan , Shuai Yin , and Fan Zhong*
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
Cite this article:   
Weilun Yuan , Shuai Yin , and Fan Zhong 2021 Chin. Phys. Lett. 38 026401
Download: PDF(1758KB)   PDF(mobile)(1774KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Symmetry breaking plays a pivotal role in modern physics. Although self-similarity is also a symmetry, and appears ubiquitously in nature, a fundamental question arises as to whether self-similarity breaking makes sense or not. Here, by identifying an important type of critical fluctuation, dubbed ‘phases fluctuations’, and comparing the numerical results for those with self-similarity and those lacking self-similarity with respect to phases fluctuations, we show that self-similarity can indeed be broken, with significant consequences, at least in nonequilibrium situations. We find that the breaking of self-similarity results in new critical exponents, giving rise to a violation of the well-known finite-size scaling, or the less well-known finite-time scaling, and different leading exponents in either the ordered or the disordered phases of the paradigmatic Ising model on two- or three-dimensional finite lattices, when subject to the simplest nonequilibrium driving of linear heating or cooling through its critical point. This is in stark contrast to identical exponents and different amplitudes in usual critical phenomena. Our results demonstrate how surprising driven nonequilibrium critical phenomena can be. The application of this theory to other classical and quantum phase transitions is also anticipated.
Received: 09 August 2020      Published: 27 January 2021
PACS:  05.70.Jk (Critical point phenomena)  
  64.60.Ht (Dynamic critical phenomena)  
  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
  64.60.an (Finite-size systems)  
  64.60.fd (General theory of critical region behavior)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11575297).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/2/026401       OR      https://cpl.iphy.ac.cn/Y2021/V38/I2/026401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Weilun Yuan 
Shuai Yin 
and Fan Zhong
[1]Mandelbrot B B 1983 The Fractal Geometry of Nature (New York: Freeman)
[2]Meakin P 1998 Fractal, Scaling and Growth far from Equilibrium (Cambridge: Cambridge University)
[3]Fisher M E 1982 Scaling, Universality and Renormalization Group Theory, Lecture notes presented at the “Advanced Course on Critical Phenomena” (The Merensky Institute of Physics, University of Stellenbosch, South Africa)
[4]Ma S K 1976 Modern Theory of Critical Phenomena (Canada: W. A. Benjamin, Inc.)
[5] Pelissetto A and Vicari E 2002 Phys. Rep. 368 549
[6] Kogut J B 1979 Rev. Mod. Phys. 51 659
[7] Fisher M E and Barber M N 1972 Phys. Rev. Lett. 28 1516
[8]Barber M N 1983 Finite-Size Scaling in Phase Transitions and Critical Phenomena edited by Domb C and Lebowitz J (New York: Academic) vol 8
[9]Cardy J 1988 Finite Size Scaling (Amsterdam: North-Holland)
[10]Privman V 1990 Finite Size Scaling and Numerical Simulations of Statistical Systems (Singapore: World Scientific)
[11] Brézin E 1982 J. Phys. France 43 15
[12] Brézin E and Zinn-Justin J 1985 Nucl. Phys. B 257 867
[13] Gasparini F M, Kimball M O, Mooney K P and Diaz-Avila M 2008 Rev. Mod. Phys. 80 1009
[14]Landau D P and Binder K 2005 A Guide to Monte Carlo Simulations in Statistical Physics 2nd edn (Cambridge: Cambridge University)
[15] Flores-Sola E, Berche B, Kenna R and Weigel M 2016 Phys. Rev. Lett. 116 115701
[16] Grimm J, Elçi E M, Zhou Z, Garoni T M and Deng Y J 2017 Phys. Rev. Lett. 118 115701
[17] Suzuki M 1977 Prog. Theor. Phys. 58 1142
[18] Wansleben S and Landau D P 1991 Phys. Rev. B 43 6006
[19] Hohenberg P C and Halperin B I 1977 Rev. Mod. Phys. 49 435
[20] Folk R and Moser G 2006 J. Phys. A 39 R207
[21] Swendsen R H and Wang J S 1987 Phys. Rev. Lett. 58 86
[22] Wolff U 1989 Phys. Rev. Lett. 62 361
[23] Gong S, Zhong F, Huang X and Fan S 2010 New J. Phys. 12 043036
[24]Zhong F 2011 Applications of Monte Carlo Method in Science and Engineering edited by Mordechai S (Intech, Rijeka, Croatia) p 469 http://www.dwz.cn/B9Pe2
[25] Zhong F and Chen Q Z 2005 Phys. Rev. Lett. 95 175701
[26] Yin S, Qin X, Lee C and Zhong F 2012 arXiv:1207.1602 [cond-mat.stat-mech]
[27] Yin S, Mai P and Zhong F 2014 Phys. Rev. B 89 094108
[28] Huang Y, Yin S, Feng B and Zhong F 2014 Phys. Rev. B 90 134108
[29] Liu C W, Polkovnikov A and Sandvik A W 2014 Phys. Rev. B 89 054307
[30] Liu C W, Polkovnikov A, Sandvik A W and Young A P 2015 Phys. Rev. E 92 022128
[31] Liu C W, Polkovnikov A and Sandvik A W 2015 Phys. Rev. Lett. 114 147203
[32] Feng B, Yin S and Zhong F 2016 Phys. Rev. B 94 144103
[33] Pelissetto A and Vicari E 2016 Phys. Rev. E 93 032141
[34] Xu N, Castelnovo C, Melko R G, Chamon C and Sandvik A W 2018 Phys. Rev. B 97 024432
[35] Xue M, Yin S and You L 2018 Phys. Rev. A 98 013619
[36] Cao X, Hu Q and Zhong F 2018 Phys. Rev. B 98 245124
[37] Gerster M, Haggenmiller B, Tschirsich F, Silvi P and Montangero S 2019 Phys. Rev. B 100 024311
[38] Li Y, Zeng Z and Zhong F 2019 Phys. Rev. E 100 020105(R)
[39] Mathey S and Diehl S 2020 Phys. Rev. Res. 2 013150
[40] Clark L W, Feng L and Chin C 2016 Science 354 606
[41] Keesling A, Omran A, Levine H, Bernien H, Pichler H, Choi S, Samajdar R, Schwartz S, Silvi P, Sachdev S, Zoller P, Endres M, Greiner M, Vuletić V and Lukin M D 2019 Nature 568 207
[42] Zhong F 2006 Phys. Rev. E 73 047102
[43] Huang Y, Yin S, Hu Q and Zhong F 2016 Phys. Rev. B 93 024103
[44] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A M and Teller E 1953 J. Chem. Phys. 21 1087
[45] Glauber R J 1963 J. Math. Phys. 4 294
[46] Nightingale M P and Blote H W J 2000 Phys. Rev. B 62 1089
[47] Ferrenberg A M and Landau D P 1991 Phys. Rev. B 44 5081
[48] Kleinert H 1999 Phys. Rev. D 60 085001
[49] Kikuchi M and Ito N 1993 J. Phys. Soc. Jpn. 62 3052
[50] Grassberger P 1995 Physica A 214 547
[51] Landau D P 1976 Phys. Rev. B 7 2997
[52]Yuan W and Zhong F 2020 (in preparation)
[53] Wegner F W 1972 Phys. Rev. B 5 4529
Viewed
Full text


Abstract