CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions |
Yawen Guo1, Wenqi Jiang1, Xinru Wang1, Fei Wan1, Guanqing Wang1*, G. H. Zhou2, Z. B. Siu3, Mansoor B. A. Jalil3, and Yuan Li1* |
1Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China 2Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Hunan Normal University, Changsha 410081, China 3Computational Nanoelectronics and Nano-device Laboratory, Electrical and Computer Engineering Department, National University of Singapore, Singapore 117576, Singapore
|
|
Cite this article: |
Yawen Guo, Wenqi Jiang, Xinru Wang et al 2021 Chin. Phys. Lett. 38 127301 |
|
|
Abstract We study electrical modulation of transport properties of silicene nanoconstrictions with different geometrical structures. We investigate the effects of the position and width of the central scattering region on the conductance with increasing Fermi energy. It is found that the conductance significantly depends on the position and the width of the nanoconstriction. Interestingly, the symmetrical structure of the central constriction region can induce a resonance effect and significantly increase the system's conductance. We also propose a novel two-channel structure with an excellent performance on the conductance compared to the one-channel structure with the same total width. Such geometrically-induced conductance modulation of silicene nanostructures can be achieved in practice via current nanofabrication technology.
|
|
Received: 21 September 2021
Published: 25 November 2021
|
|
PACS: |
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11574067). |
|
|
[1] | Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B, and Lay G L 2010 Appl. Phys. Lett. 96 183102 |
[2] | Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, and Aufray B 2010 Appl. Phys. Lett. 97 223109 |
[3] | De Padova P, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, and Oughaddou H 2010 Appl. Phys. Lett. 96 261905 |
[4] | Cahangirov S, Topsakal M, Aktürk E, Şahin H, and Ciraci S 2009 Phys. Rev. Lett. 102 236804 |
[5] | Fagan S B, Baierle R J, Mota R, Silva A J R D, and Fazzio A 2000 Phys. Rev. B 61 9994 |
[6] | Chen L, Liu C C, Feng B J, He X Y, Cheng P, Ding Z J, Meng S, Yao Y G, and Wu K H 2012 Phys. Rev. Lett. 109 056804 |
[7] | Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, and Lay G L 2012 Phys. Rev. Lett. 108 155501 |
[8] | Liu C C, Jiang H, and Yao Y G 2011 Phys. Rev. B 84 195430 |
[9] | Guo Z X, Furuya S, Iwata J, and Oshiyama A 2013 Phys. Rev. B 87 235435 |
[10] | Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M, and Takagi N 2013 Phys. Rev. Lett. 110 076801 |
[11] | Ezawa M 2012 New J. Phys. 14 033003 |
[12] | Pan H, Li Z S, Liu C C, Zhu G B, Qiao Z H, and Yao Y G 2014 Phys. Rev. Lett. 112 106802 |
[13] | Liu C C, Feng W X, and Yao Y G 2011 Phys. Rev. Lett. 107 076802 |
[14] | Tabert C J and Nicol E J 2013 Phys. Rev. B 87 235426 |
[15] | Missault N, Vasilopoulos P, Vargiamidis V, Peeters F M, and Van Duppen B 2015 Phys. Rev. B 92 195423 |
[16] | Stille L, Tabert C J, and Nicol E J 2012 Phys. Rev. B 86 195405 |
[17] | Yesilyurt C, Tan S G, Liang G, and Jalil M B A 2015 Appl. Phys. Express 8 105201 |
[18] | Siu Z B and Jalil M B A 2021 Sci. Rep. 11 7575 |
[19] | Ezawa M and Nagaosa N 2013 Phys. Rev. B 88 121401(R) |
[20] | Cano-Cortes L, Ortix C, and van den Brink J 2013 Phys. Rev. Lett. 111 146801 |
[21] | Van Duppen B, Vasilopoulos P, and Peeters F M 2014 Phys. Rev. B 90 035142 |
[22] | Li Y, Jiang W Q, Ding G Y, Peng Y Z, Wen Z C, Wang G Q, Bai R, Qian Z H, Xiao X B, and Zhou G H 2019 J. Appl. Phys. 125 244304 |
[23] | Yamakage A, Ezawa M, Tanaka Y, and Nagaosa N 2013 Phys. Rev. B 88 085322 |
[24] | Guzmán E, Navarro O, Oubram O, and Rodríguez-Vargas I 2018 J. Appl. Phys. 124 144305 |
[25] | Li Y, Zhu H B, Wang G Q, Peng Y Z, Xu J R, Qian Z H, Bai R, Zhou G H, Yesilyurt C, Siu Z B, and Jalil M B A 2018 Phys. Rev. B 97 085427 |
[26] | Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 |
[27] | Ezawa M 2012 Phys. Rev. Lett. 109 055502 |
[28] | Büttiker M, Imry Y, Landauer R, and Pinhas S 1985 Phys. Rev. B 31 6207 |
[29] | Wimmer M 2009 PhD Dissertation (German: University of Regensburg) |
[30] | Khomyakov P A, Brocks G, Karpan V, Zwierzycki M, and Kelly P J 2005 Phys. Rev. B 72 035450 |
[31] | Kang J, Wu F, and Li J 2012 Appl. Phys. Lett. 100 233122 |
[32] | Zhou B L, Zhou B H, Chen X W, Liao W H, and Zhou G H 2015 J. Phys.: Condens. Matter 27 465301 |
[33] | Khizroev S, Hijazi Y, Chomko R, Mukherjee S, Chantrell R, Wu X, Carley R, and Litvinov D 2005 Appl. Phys. Lett. 86 042502 |
[34] | Fernández-Pacheco A, De Teresa J M, Córdoba R, and Ibarra M R 2008 Nanotechnology 19 415302 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|