Chin. Phys. Lett.  2021, Vol. 38 Issue (12): 126701    DOI: 10.1088/0256-307X/38/12/126701
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
CuI/Nylon Membrane Hybrid Film with Large Seebeck Effect
Xiaowen Han, Yiming Lu, Ying Liu, Miaomiao Wu, Yating Li, Zixing Wang, and Kefeng Cai*
Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), Shanghai Key Laboratory of Development and Application for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
Cite this article:   
Xiaowen Han, Yiming Lu, Ying Liu et al  2021 Chin. Phys. Lett. 38 126701
Download: PDF(1358KB)   PDF(mobile)(1451KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Room-temperature thermoelectric materials are important for converting heat into electrical energy. As a wide-bandgap semiconductor material, CuI has the characteristics of non-toxicity, low cost, and environmental friendliness. In this work, CuI powder was synthesized by a wet chemical method, then CuI film was formed by vacuum assisted filtration of the CuI powder on a porous nylon membrane, followed by hot pressing. The film exhibits a large Seebeck coefficient of 600 µV$\cdot$K$^{-1}$ at room temperature. In addition, the film also shows good flexibility ($\sim $95% retention of the electrical conductivity after being bent along a rod with a radius of 4 mm for 1000 times). A finger touch test on a single-leg TE module indicates that a voltage of 0.9 mV was immediately generated within 0.5 s from a temperature difference of 4 K between a finger and the environment, suggesting the potential application in wearable thermal sensors.
Received: 30 August 2021      Published: 27 November 2021
PACS:  73.50.Lw (Thermoelectric effects)  
  81.15.Ef  
  81.20.Ka (Chemical synthesis; combustion synthesis)  
  85.80.Fi (Thermoelectric devices)  
Fund: Supported by the International Scientific and Technological Innovation Cooperation Project between the Governments of Key National R&D Program of China (Grant No. 2018YFE0111500), and the National Natural Science Foundation of China (Grant No. 51972234).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/12/126701       OR      https://cpl.iphy.ac.cn/Y2021/V38/I12/126701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaowen Han
Yiming Lu
Ying Liu
Miaomiao Wu
Yating Li
Zixing Wang
and Kefeng Cai
[1] Shakour A 2011 Annu. Rev. Mater. Res. 41 399
[2] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[3] Jin Q, Shi W B, Zhao Y, Qiao J X, Qiu J H, Sun C, Lei H, Tai K P, and Jiang X 2018 ACS Appl. Mater. & Interfaces 10 1743
[4] Varghese T, Dun C C, Kempf N, Saeidi J M, Karthik C, Richardson J, Hollar C, Estrada D, and Zhang Y L 2020 Adv. Funct. Mater. 30 1905796
[5] Liang D X, Yang H R, Finefrock S W, and Wu Y 2012 Nano Lett. 12 2140
[6] Li X, Cai K F, Gao M Y, Du Y, and Shen S 2021 Nano Energy 89 106309
[7] Song H J and Cai K F 2017 Energy 125 519
[8] Meng Q F, Song H J, Du Y, Ding Y F, and Cai K F 2021 J. Materiomics 7 302
[9] Keen D A and Hull S 1995 J. Phys.: Condens. Matter 7 5793
[10] Grundmann M, Schein F L, Lorenz M, Bontgen T, Lenzner J, and Wenckstern H 2013 Phys. Status Solidi A 210 1671
[11] Yu W L, Benndorf G, Jiang Y F, Jiang K, Yang C, Lorenz M, and Grundmann M 2021 Phys. Status Solidi RRL 15 2000431
[12] Chinnakutti K K, Panneerselvam V, Govindarajan D, Soman A K, Parasuraman K, and Salammal S T 2019 Prog. Nat. Sci.: Mater. Int. 29 533
[13] Luo W, Zeng C, Du X Q, Leng C Q, Yao W, Shi H F, Wei X Z, Du C L, and Lu S R 2018 J. Mater. Chem. C 6 4895
[14] Yang Y, Shuman L, and Keisaku K 2005 Chem. Lett. 34 1158
[15] Geng F J, Yang L, Dai B, Guo S, Gao G, Xu L G, Han J C, Bolshakov A, and Zhu J Q 2019 Surf. Coat. Technol. 361 396
[16] Yadav M K and Sanyal B 2014 Mater. Res. Express 1 015708
[17] Yang C, Souchay D, Kneiss M, Bogner M, Wei M, Lorenz M, Oeckler O, Benstetter G, Fu Y Q, and Grundmann M 2017 Nat. Commun. 8 16076
[18] Klochko N P, Zhadan D O, Klepikova K S, Petrushenko S I, Kopach V R, Khrypunov G S, Lyubov V M, Dukarov S V, and Khrypunova A L 2019 Thin Solid Films 683 34
[19] Murmu P P, Karthik V, Liu Z H, Jovic V, Mori T, Yang W L, Smith K E, and Kennedy J V 2020 ACS Appl. Energy Mater. 3 10037
[20] Salah N, Abusorrah A M, Salah Y N, Almasoudi M, Baghdadi N, Alshahri A, and Koumoto K 2020 Ceram. Int. 46 27244
[21] Kneiss M, Yang C, Barzola Q J, Benndorf G, Wenckstern H, Esquinazi P, Lorenz M, and Grundmann M 2018 Adv. Mater. Interfaces 5 1701411
[22] Mulla R and Rabinal M K 2018 Energy Technol. 6 1178
[23] Ding Y F, Qiu Y, Cai K F, Yao Q, Chen S, Chen L D, and He J Q 2019 Nat. Commun. 10 841
[24] Jiang C, Ding Y, Cai K F, Tong L, Lu Y, Zhao W Y, and Wei P 2020 ACS Appl. Mater. & Interfaces 12 9646
[25] Lu Y, Qiu Y, Cai K F, Ding Y F, Wang M D, Jiang C, Yao Q, Huang C J, Chen L D, and He J Q 2020 Energy & Environ. Sci. 13 1240
[26] Jiang C, Wei P, Ding Y F, Cai K F, Tong L, Gao Q, Lu Y, Zhao W Y, and Chen S 2021 Nano Energy 80 105488
[27] Gao Q, Wu W, Lu Y, Cai K F, Li Y T, Wang Z X, Wu M M, Huang C J, and He J Q 2021 ACS Appl. Mater. & Interfaces 13 14327
[28] Li W J and Shi E W 2002 Cryst. Res. Technol. 37 1041
[29] Zheng Z, Liu A, and Wang S 2008 Chem. Mater. 18 852
[30] Yamada N, Ino R, and Ninomiya Y 2016 Chem. Mater. 28 4971
[31] Wang J, Li J B, and Li S S 2011 J. Appl. Phys. 110 054907
[32] Huang D, Zhao Y J, Li S, Li C S, Nie J J, Cai X H, and Yao C M 2012 J. Phys. D 45 145102
[33] Pishtshev A and Karazhanov S 2017 J. Chem. Phys. 146 064706
[34] Liu A, Zhu H H, Kim M G, Kim J, and Noh Y Y 2021 Adv. Sci. 8 2100546
[35] Coroa J, Faustino B M M, Marques A, Bianchi C, Koskinen T, Juntunen T, Tittonen I, and Ferreira I 2019 RSC Adv. 9 35384
Viewed
Full text


Abstract