CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
CuI/Nylon Membrane Hybrid Film with Large Seebeck Effect |
Xiaowen Han, Yiming Lu, Ying Liu, Miaomiao Wu, Yating Li, Zixing Wang, and Kefeng Cai* |
Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), Shanghai Key Laboratory of Development and Application for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China |
|
Cite this article: |
Xiaowen Han, Yiming Lu, Ying Liu et al 2021 Chin. Phys. Lett. 38 126701 |
|
|
Abstract Room-temperature thermoelectric materials are important for converting heat into electrical energy. As a wide-bandgap semiconductor material, CuI has the characteristics of non-toxicity, low cost, and environmental friendliness. In this work, CuI powder was synthesized by a wet chemical method, then CuI film was formed by vacuum assisted filtration of the CuI powder on a porous nylon membrane, followed by hot pressing. The film exhibits a large Seebeck coefficient of 600 µV$\cdot$K$^{-1}$ at room temperature. In addition, the film also shows good flexibility ($\sim $95% retention of the electrical conductivity after being bent along a rod with a radius of 4 mm for 1000 times). A finger touch test on a single-leg TE module indicates that a voltage of 0.9 mV was immediately generated within 0.5 s from a temperature difference of 4 K between a finger and the environment, suggesting the potential application in wearable thermal sensors.
|
|
Received: 30 August 2021
Published: 27 November 2021
|
|
|
|
Fund: Supported by the International Scientific and Technological Innovation Cooperation Project between the Governments of Key National R&D Program of China (Grant No. 2018YFE0111500), and the National Natural Science Foundation of China (Grant No. 51972234). |
|
|
[1] | Shakour A 2011 Annu. Rev. Mater. Res. 41 399 |
[2] | Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 |
[3] | Jin Q, Shi W B, Zhao Y, Qiao J X, Qiu J H, Sun C, Lei H, Tai K P, and Jiang X 2018 ACS Appl. Mater. & Interfaces 10 1743 |
[4] | Varghese T, Dun C C, Kempf N, Saeidi J M, Karthik C, Richardson J, Hollar C, Estrada D, and Zhang Y L 2020 Adv. Funct. Mater. 30 1905796 |
[5] | Liang D X, Yang H R, Finefrock S W, and Wu Y 2012 Nano Lett. 12 2140 |
[6] | Li X, Cai K F, Gao M Y, Du Y, and Shen S 2021 Nano Energy 89 106309 |
[7] | Song H J and Cai K F 2017 Energy 125 519 |
[8] | Meng Q F, Song H J, Du Y, Ding Y F, and Cai K F 2021 J. Materiomics 7 302 |
[9] | Keen D A and Hull S 1995 J. Phys.: Condens. Matter 7 5793 |
[10] | Grundmann M, Schein F L, Lorenz M, Bontgen T, Lenzner J, and Wenckstern H 2013 Phys. Status Solidi A 210 1671 |
[11] | Yu W L, Benndorf G, Jiang Y F, Jiang K, Yang C, Lorenz M, and Grundmann M 2021 Phys. Status Solidi RRL 15 2000431 |
[12] | Chinnakutti K K, Panneerselvam V, Govindarajan D, Soman A K, Parasuraman K, and Salammal S T 2019 Prog. Nat. Sci.: Mater. Int. 29 533 |
[13] | Luo W, Zeng C, Du X Q, Leng C Q, Yao W, Shi H F, Wei X Z, Du C L, and Lu S R 2018 J. Mater. Chem. C 6 4895 |
[14] | Yang Y, Shuman L, and Keisaku K 2005 Chem. Lett. 34 1158 |
[15] | Geng F J, Yang L, Dai B, Guo S, Gao G, Xu L G, Han J C, Bolshakov A, and Zhu J Q 2019 Surf. Coat. Technol. 361 396 |
[16] | Yadav M K and Sanyal B 2014 Mater. Res. Express 1 015708 |
[17] | Yang C, Souchay D, Kneiss M, Bogner M, Wei M, Lorenz M, Oeckler O, Benstetter G, Fu Y Q, and Grundmann M 2017 Nat. Commun. 8 16076 |
[18] | Klochko N P, Zhadan D O, Klepikova K S, Petrushenko S I, Kopach V R, Khrypunov G S, Lyubov V M, Dukarov S V, and Khrypunova A L 2019 Thin Solid Films 683 34 |
[19] | Murmu P P, Karthik V, Liu Z H, Jovic V, Mori T, Yang W L, Smith K E, and Kennedy J V 2020 ACS Appl. Energy Mater. 3 10037 |
[20] | Salah N, Abusorrah A M, Salah Y N, Almasoudi M, Baghdadi N, Alshahri A, and Koumoto K 2020 Ceram. Int. 46 27244 |
[21] | Kneiss M, Yang C, Barzola Q J, Benndorf G, Wenckstern H, Esquinazi P, Lorenz M, and Grundmann M 2018 Adv. Mater. Interfaces 5 1701411 |
[22] | Mulla R and Rabinal M K 2018 Energy Technol. 6 1178 |
[23] | Ding Y F, Qiu Y, Cai K F, Yao Q, Chen S, Chen L D, and He J Q 2019 Nat. Commun. 10 841 |
[24] | Jiang C, Ding Y, Cai K F, Tong L, Lu Y, Zhao W Y, and Wei P 2020 ACS Appl. Mater. & Interfaces 12 9646 |
[25] | Lu Y, Qiu Y, Cai K F, Ding Y F, Wang M D, Jiang C, Yao Q, Huang C J, Chen L D, and He J Q 2020 Energy & Environ. Sci. 13 1240 |
[26] | Jiang C, Wei P, Ding Y F, Cai K F, Tong L, Gao Q, Lu Y, Zhao W Y, and Chen S 2021 Nano Energy 80 105488 |
[27] | Gao Q, Wu W, Lu Y, Cai K F, Li Y T, Wang Z X, Wu M M, Huang C J, and He J Q 2021 ACS Appl. Mater. & Interfaces 13 14327 |
[28] | Li W J and Shi E W 2002 Cryst. Res. Technol. 37 1041 |
[29] | Zheng Z, Liu A, and Wang S 2008 Chem. Mater. 18 852 |
[30] | Yamada N, Ino R, and Ninomiya Y 2016 Chem. Mater. 28 4971 |
[31] | Wang J, Li J B, and Li S S 2011 J. Appl. Phys. 110 054907 |
[32] | Huang D, Zhao Y J, Li S, Li C S, Nie J J, Cai X H, and Yao C M 2012 J. Phys. D 45 145102 |
[33] | Pishtshev A and Karazhanov S 2017 J. Chem. Phys. 146 064706 |
[34] | Liu A, Zhu H H, Kim M G, Kim J, and Noh Y Y 2021 Adv. Sci. 8 2100546 |
[35] | Coroa J, Faustino B M M, Marques A, Bianchi C, Koskinen T, Juntunen T, Tittonen I, and Ferreira I 2019 RSC Adv. 9 35384 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|