CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Li Plating on Carbon Electrode Surface Probed by Low-Field Dynamic Nuclear Polarization $^{7}$Li NMR |
Zhekai Zhang1,2, Jiyu Tian3, Junfei Chen1, Yugui He1, Chaoyang Liu1, Xinmiao Liang1*, and Jiwen Feng1 |
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
|
|
Cite this article: |
Zhekai Zhang, Jiyu Tian, Junfei Chen et al 2021 Chin. Phys. Lett. 38 126801 |
|
|
Abstract Lithium deposition on graphite electrode not only reduces fast-charging capability of lithium ion batteries but also causes safety trouble. Here, a low-field $^{7}$Li dynamic nuclear polarization (DNP) is used to probe Li plating on the surfaces of three types of carbon electrodes: hard carbon, soft carbon and graphite. Owing to the strong Fermi contact interaction between $^{7}$Li and conduction electrons, the $^{7}$Li nuclear-magnetic-resonance (NMR) signal of Li metal deposited on electrode surface could be selectively enhanced by DNP. It is suggested that low-field $^{7}$Li DNP spectroscopy is a sensitive tool for investigating Li deposition on electrodes during charging/discharging processes.
|
|
Received: 11 October 2021
Published: 25 November 2021
|
|
PACS: |
82.47.Aa
|
(Lithium-ion batteries)
|
|
81.15.Pq
|
(Electrodeposition, electroplating)
|
|
76.70.Fz
|
(Double nuclear magnetic resonance (DNMR), dynamical nuclear polarization)
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2018YFC0115000), the National Natural Science Foundation of China (Grant No. 21603267), and the Chinese Academy of Sciences (Grant No. YZ201677 and YZ201551). |
|
|
[1] | Armand M and Tarascon J M 2008 Nature 451 652 |
[2] | Irisarri E, Ponrouch A, and Palacin M R 2015 J. Electrochem. Soc. 162 A2476 |
[3] | Sathiya M, Rousse G, Ramesha K, Laisa C, Vezin H, Sougrati M T, Doublet M L, Foix D, Gonbeau D, and Walker W 2013 Nat. Mater. 12 827 |
[4] | Wen C J and Huggins R A 1981 J. Electrochem. Soc. 128 1181 |
[5] | Wen C J and Huggins R A 1981 J. Solid State Chem. 37 271 |
[6] | Gauthier M, Carney T J, Grimaud A, Giordano L, Pour N, Chang H H, Fenning D P, Lux S F, Paschos O, Bauer C, Maglia F, Lupart S, Lamp P, and Shao-Horn Y 2015 J. Phys. Chem. Lett. 6 4653 |
[7] | Andersson A and Edström K 2001 J. Electrochem. Soc. 148 A1100 |
[8] | Smart M, Ratnakumar B, Surampudi S, Wang Y, Zhang X, Greenbaum S, Hightower A, Ahn C, and Fultz B 1999 J. Electrochem. Soc. 146 3963 |
[9] | Andersson A M, Henningson A, Siegbahn H, Jansson U, and Edström K 2003 J. Power Sources 119–121 522 |
[10] | Morigaki K I and Ohta A 1998 J. Power Sources 76 159 |
[11] | Ein-Eli Y, Markovsky B, Aurbach D, Carmeli Y, Yamin H, and Luski S 1994 Electrochim. Acta 39 2559 |
[12] | Aurbach D, Levi M D, Levi E, and Schechter A 1997 J. Phys. Chem. B 101 2195 |
[13] | Wandt J, Marino C, Gasteiger H A, Jakes P, Eichel R A, and Granwehr J 2015 Energy & Environ. Sci. 8 1358 |
[14] | Wandt J, Jakes P, Granwehr J, Eichel R A, and Gasteiger H A 2018 Mater. Today 21 231 |
[15] | Gireaud L, Grugeon S, Laruelle S, Pilard S, and Tarascon J M 2005 J. Electrochem. Soc. 152 A850 |
[16] | Dai Y, Wang Y, Eshkenazi V, Peled E, and Greenbaum S 1998 J. Electrochem. Soc. 145 1179 |
[17] | Matsumura Y, Wang S, Nakagawa Y, and Yamaguchi C 1997 Synth. Met. 85 1411 |
[18] | Łoś, Duclauxb L, Kempiński W, and Połomska M 2010 Microporous Mesoporous Mater. 130 21 |
[19] | See K A, Hug S, Schwinghammer K, Lumley M A, Zheng Y, Nolt J M, Stucky G D, Wudl F, Lotsch B V, and Seshadri R 2015 Chem. Mater. 27 3821 |
[20] | Wang B, Fevre L W L, Brookfield A, McInnes E J L, and Dryfe R A W 2021 Angew. Chem. Int. Ed. 60 21860 |
[21] | Hooper R W, Klein B A, and Michaelis V K 2020 Chem. Mater. 32 4425 |
[22] | Carver T R and Slichter C P 1953 Phys. Rev. 92 212 |
[23] | Overhauser A W 1953 Phys. Rev. 92 411 |
[24] | Hope M A, Rinkel B L D, Gunnarsdottir A B, Marker K, Menkin S, Paul S, Sergeyev I V, and Grey C P 2020 Nat. Commun. 11 2224 |
[25] | Leskes M, Kim G, Liu T, Michan A L, Aussenac F, Dorffer P, Paul S, and Grey C P 2017 J. Phys. Chem. Lett. 8 1078 |
[26] | Harchol A, Reuveni G, Ri V, Thomas B, Carmieli R, Herber R H, Kim C, and Leskes M 2020 J. Phys. Chem. C 124 7082 |
[27] | Garcia S, Walton J H, Armstrong B, Han S, and McCarthy M J 2010 J. Magn. Reson. 203 138 |
[28] | Rosay M, Tometich L, Pawsey S, Bader R, Schauwecker R, Blank M, Borchard P M, Cauffman S R, Felch K L, Weber R T, Temkin R J, Griffin R G, and Maas W E 2010 Phys. Chem. Chem. Phys. 12 5850 |
[29] | Waldmann T, Hogg B I, and Wohlfahrt-Mehrens M 2018 J. Power Sources 384 107 |
[30] | Yang L, Bao Q, Mao W, and Liu C 2012 Chin. J. Magn. Reson. 29 78 (in Chinese) |
[31] | He Y, Feng J, Zhang Z, Wang C, Wang D, Chen F, Liu M, and Liu C 2015 Rev. Sci. Instrum. 86 083101 |
[32] | Niemoller A, Jakes P, Eichel R A, and Granwehr J 2018 Sci. Rep. 8 14331 |
[33] | Liu G, Levien M, Karschin N, Parigi G, Luchinat C, and Bennati M 2017 Nat. Chem. 9 676 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|