CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Topological Properties in Strained Monolayer Antimony Iodide |
Danwen Yuan1,2, Yuefang Hu1,2*, Yanmin Yang1,2, and Wei Zhang1,2* |
1Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China 2Fujian Provincial Collaborative Innovation Center for Advanced High-field Superconducting Materials and Engineering, Fuzhou 350117, China
|
|
Cite this article: |
Danwen Yuan, Yuefang Hu, Yanmin Yang et al 2021 Chin. Phys. Lett. 38 117301 |
|
|
Abstract Two-dimensional (2D) topological insulators present a special phase of matter manifesting unique electronic properties. Till now, many monolayer binary compounds of Sb element, mainly with a honeycomb lattice, have been reported as 2D topological insulators. However, research of the topological insulating properties of the monolayer Sb compounds with square lattice is still lacking. Here, by means of the first-principles calculations, a monolayer SbI with square lattice is proposed to exhibit the tunable topological properties by applying strain. At different levels of the strain, the monolayer SbI shows two different structural phases: buckled square structure and buckled rectangular structure, exhibiting attracting topological properties. We find that in the buckled rectangular phase, when the strain is greater than 3.78%, the system experiences a topological phase transition from a nontrivial topological insulator to a trivial insulator, and the structure at the transition point actually is a Dirac semimetal possessing two type-I Dirac points. In addition, the system can achieve the maximum global energy gap of 72.5 meV in the topological insulator phase, implying its promising application at room temperature. This study extends the scope of 2D topological physics and provides a platform for exploring the low-dissipation quantum electronics devices.
|
|
Received: 07 September 2021
Published: 27 October 2021
|
|
PACS: |
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11974076 and 61804030), and the Key Project of Natural Science Foundation of Fujian Province (Grant No. 2021J02012). |
|
|
[1] | Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 |
[2] | Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, and Zhang S C 2009 Nat. Phys. 5 438 |
[3] | Zhang J L, Wang D H, Shi M J, Zhu T S, Zhang H J, and Wang J 2020 Chin. Phys. Lett. 37 077304 |
[4] | Niu C W, Buhl P M, Bihlmayer G, Wortmann D, Blügel S, and Mokrousov Y 2015 Nano Lett. 15 6071 |
[5] | Ma Y D, Kou L Z, Li X, Dai Y, and Heine T 2016 NPG Asia Mater. 8 e264 |
[6] | Luo W and Xiang H J 2015 Nano Lett. 15 3230 |
[7] | Xu S, Zhou L Q, Wang X Y, Wang H, Lin J F, Zeng X Y, Cheng P, Weng H M, and Xia T L 2020 Chin. Phys. Lett. 37 107504 |
[8] | Teshome T and Datta A 2018 J. Phys. Chem. C 122 15047 |
[9] | Guo S D, Mu W Q, Zhu Y T, Wang S Q, and Wang G Z 2021 J. Mater. Chem. C 9 5460 |
[10] | Rodin A S, Carvalho A, and Castro N A H 2014 Phys. Rev. Lett. 112 176801 |
[11] | Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J, and Kim K S 2015 Science 349 723 |
[12] | Zhang W, Yu R, Feng W X, Yao Y G, Weng H M, Dai X, and Fang Z 2011 Phys. Rev. Lett. 106 156808 |
[13] | Yu R, Zhang W, Zhang H J, Zhang S S, Dai X, and Fang Z 2010 Science 329 61 |
[14] | Ma F X, Jiao Y L, Gao G P, Gu Y T, Bilic A, Chen Z F, and Du A J 2016 Nano Lett. 16 3022 |
[15] | Sui Q, Zhang J X, Jin S H, Xia Y, and Li G 2020 Chin. Phys. Lett. 37 097301 |
[16] | König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, and Zhang S C 2007 Science 318 766 |
[17] | Zhang W, Yu R, Zhang H J, Dai X, and Fang Z 2010 New J. Phys. 12 065013 |
[18] | Zhang W, Luo K F, Chen Z D, Zhu Z M, Yu R, Fang C, and Weng H M 2019 npj Comput. Mater. 5 105 |
[19] | Lv H Z, Wang Z W, Cheng Q B, Zhang W, and Yu R 2021 Phys. Rev. B 103 L241115 |
[20] | Yang F, Miao L, Wang Z F, Yao M Y, Zhu F F, Song Y R, Wang M X, Xu J P, Fedorov A V, Sun Z, Zhang G B, Liu C H, Liu F, Qian D, Gao C L, and Jia J F 2012 Phys. Rev. Lett. 109 016801 |
[21] | Nie S M, Song Z D, Weng H M, and Fang Z 2015 Phys. Rev. B 91 235434 |
[22] | Cui Z H, Qian Y T, Zhang W, Weng H M, and Fang Z 2020 Chin. Phys. Lett. 37 087103 |
[23] | Sun F, Zhang T, Yi C J, Wu Y L, Zhao H, Wu Q, Shi Y G, Weng H M, and Zhao J M 2021 Phys. Rev. B 104 L100301 |
[24] | Wu Q, Sun F, Zhang Q Y, Zhao L X, Chen G F, and Zhao J M 2020 Phys. Rev. Mater. 4 064201 |
[25] | Sun F, Wu Q, Wu Y L, Zhao H, Yi C J, Tian Y C, Liu H W, Shi Y G, Ding H, Dai X, Richard P, and Zhao J M 2017 Phys. Rev. B 95 235108 |
[26] | Yao Y G, Ye F, Qi X L, Zhang S C, and Fang Z 2007 Phys. Rev. B 75 041401 |
[27] | Xu Y, Yan B H, Zhang H J, Wang J, Xu G, Tang P Z, Duan W H, and Zhang S C 2013 Phys. Rev. Lett. 111 136804 |
[28] | Cahangirov S, Topsakal M, Aktürk E, Sahin H, and Ciraci S 2009 Phys. Rev. Lett. 102 236804 |
[29] | Liu C C, Feng W X, and Yao Y G 2011 Phys. Rev. Lett. 107 076802 |
[30] | Fabris G S L, Marana N L, Longo E, and Sambrano J R 2018 Theor. Chem. Acc. 137 13 |
[31] | Zhang W, Wu Q S, Yazyev O V, Weng H M, Guo Z X, Cheng W D, and Chai G L 2018 Phys. Rev. B 98 115411 |
[32] | Chen Z D, Hu Y F, Zhu Z M, and Zhang W 2020 New J. Phys. 22 093055 |
[33] | Zhang S L, Xie M Q, Cai B, Zhang H J, Ma Y D, Chen Z F, Zhu Z, Hu Z Y, and Zeng H B 2016 Phys. Rev. B 93 245303 |
[34] | Yu W Y, Niu C Y, Zhu Z L, Cai X L, Zhang L W, Bai S Y, Zhao R Q, and Jia Y 2017 RSC Adv. 7 27816 |
[35] | Hu X K, Ma Y X, Pang Z X, and Li P 2019 Chem. Phys. 523 110 |
[36] | Song Z D, Nie S M, Weng H M, and Fang Z 2015 arXiv:1508.05220v1 [cond-mat.mes-hall] |
[37] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[38] | Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 |
[39] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[40] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[41] | Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847 |
[42] | Souza I, Marzari N, and Vanderbilt D 2001 Phys. Rev. B 65 035109 |
[43] | Wu Q S, Zhang S N, Song H F, Troyer M, and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 |
[44] | Thonhauser T, Cooper V R, Li S, Puzder A, Hyldgaard P, and Langreth D C 2007 Phys. Rev. B 76 125112 |
[45] | Dion M, Rydberg H, Schröder E, Langreth D C, and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401 |
[46] | Luo X, Sullivan M B, and Quek S Y 2012 Phys. Rev. B 86 184111 |
[47] | Altmann S L and Herzig P 1994 Point-Group Theory Tables (New York: Oxford University Press) p 137 |
[48] | de Boer P K and de Groot R A 1998 J. Phys.: Condens. Matter 10 10241 |
[49] | Baltache H, Khenata R, Sahnoun M, Driz M, Abbar B, and Bouhafs B 2004 Physica B 344 334 |
[50] | Yang X, Wang Y, Yan H Y, and Chen Y F 2016 Comput. Mater. Sci. 121 61 |
[51] | Odkhuu D 2019 AIP Adv. 9 125129 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|