CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Enhanced Thermoelectric Properties of Cu$_{x}$Se ($1.75 \le x \le 2.10$) during Phase Transitions |
Zhongmou Yue1,2, Kunpeng Zhao3*, Hongyi Chen4, Pengfei Qiu1,2, Lidong Chen1,2, and Xun Shi1,2* |
1State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 4College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
|
|
Cite this article: |
Zhongmou Yue, Kunpeng Zhao, Hongyi Chen et al 2021 Chin. Phys. Lett. 38 117201 |
|
|
Abstract Coupling of a phase transition to electron and phonon transports provides extra degree of freedom to improve the thermoelectric performance, while the pertinent experimental and theoretical studies are still rare. Particularly, the impaction of chemical compositions and phase transition characters on the abnormal thermoelectric properties across phase transitions are largely unclear. Herein, by varying the Cu content $x$ from 1.75 to 2.10, we systemically investigate the crystal structural evolution, phase transition features, and especially the thermoelectric properties during the phase transition for Cu$_{x}$Se. It is found that the addition of over-stoichiometry Cu in Cu$_{x}$Se could alter the phase transition characters and suppress the formation of Cu vacancies. The critical scatterings of phonons and electrons during phase transitions strongly enhance the Seebeck coefficient and diminish the thermal conductivity, leading to an ultrahigh dimensionless thermoelectric figure of merit of $\sim $1.38 at 397 K in Cu$_{2.10}$Se. With the decreasing Cu content, the critical electron and phonon scattering behaviors are mitigated, and the corresponding thermoelectric performances are reduced. This work offers inspirations for understanding and tuning the thermoelectric transport properties during phase transitions.
|
|
Received: 26 August 2021
Published: 27 October 2021
|
|
PACS: |
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
72.20.Pa
|
(Thermoelectric and thermomagnetic effects)
|
|
73.50.Lw
|
(Thermoelectric effects)
|
|
68.35.Rh
|
(Phase transitions and critical phenomena)
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2018YFB0703600), the National Natural Science Foundation of China (Grant Nos. 91963208, 51625205, 51961135106, and 51902199), Shanghai Government (Grant No. 20JC1415100), the CAS-DOE Program of Chinese Academy of Sciences (Grant No. 121631KYSB20180060), and the Shanghai Sailing Program (Grant No. 19YF1422800). |
|
|
[1] | Shi X, Chen L, and Uher C 2016 Int. Mater. Rev. 61 379 |
[2] | Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 |
[3] | Shi X L, Zou J, and Chen Z G 2020 Chem. Rev. 120 7399 |
[4] | Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, and Venkatasubramanian R 2009 Nat. Nanotechnol. 4 235 |
[5] | Hudak N S and Amatucci G G 2008 J. Appl. Phys. 103 101301 |
[6] | Sharp J, Bierschenk J, and Lyon H B 2006 Proc. IEEE 94 1602 |
[7] | Snyder G J, Lim J R, Huang C K, and Fleurial J P 2003 Nat. Mater. 2 528 |
[8] | Zhao H Z, Sui J E, Tang Z J, Lan Y C, Jie Q G, Kraemer D, McEnaney K N, Guloy A, Chen G, and Ren Z F 2014 Nano Energy 7 97 |
[9] | Zhang J, Song L, Pedersen S H, Yin H, Hung L T, and Iversen B B 2017 Nat. Commun. 8 13901 |
[10] | Mao J, Shuai J, Song S W, Wu Y X, Dally R, Zhou J W, Liu Z H, Sun J F, Zhang Q Y, dela C C, Wilson S, Pei Y Z, Singh D J, Chen G, Chu C W, and Ren Z F 2017 Proc. Natl. Acad. Sci. USA 114 10548 |
[11] | Liang J, Qiu P, Zhu Y, Huang H, Gao Z, Zhang Z, Shi X, and Chen L 2020 Research 2020 6591981 |
[12] | Shi X, Chen H Y, Hao F, Liu R H, Wang T, Qiu P F, Burkhardt U, Grin Y, and Chen L D 2018 Nat. Mater. 17 421 |
[13] | Chen H Y, Wei T R, Zhao K P, Qiu P F, Chen L D, He J, and Shi X 2021 InfoMat 3 22 |
[14] | Gao Z Q, Yang Q Y, Qiu P F, Wei T R, Yang S Q, Xiao J, Chen L D, and Shi X 2021 Adv. Energy Mater. 11 2170086 |
[15] | Liang J S, Wang T, Qiu P F, Yang S Q, Ming C, Chen H Y, Song Q F, Zhao K P, Wei T R, Ren D D, Sun Y Y, Shi X, He J, and Chen L D 2019 Energy & Environ. Sci. 12 2983 |
[16] | Yang S Q, Gao Z Q, Qiu P F, Liang J S, Wei T R, Deng T T, Xiao J, Shi X, and Chen L D 2021 Adv. Mater. 33 2007681 |
[17] | He S Y, Li Y B, Liu L, Jiang Y, Feng J J, Zhu W, Zhang J Y, Dong Z R, Deng Y, Luo J, Zhang W Q, and Chen G 2020 Sci. Adv. 6 eaaz8423 |
[18] | Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X A, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, and Ren Z F 2008 Science 320 634 |
[19] | Zhai R S, Wu Y H, Zhu T J, and Zhao X B 2018 Rare Met. 37 308 |
[20] | Witting I T, Chasapis T C, Ricci F, Peters M, Heinz N A, Hautier G, and Snyder G J 2019 Adv. Electron. Mater. 5 1800904 |
[21] | Mao J, Chen G, and Ren Z F 2021 Nat. Mater. 20 454 |
[22] | Liu H L, Shi X, Kirkham M, Wang H, Li Q, Uher C, Zhang W Q, and Chen L D 2013 Mater. Lett. 93 121 |
[23] | Jiang B, Qiu P, Chen H, Huang J, Mao T, Wang Y, Song Q, Ren D, Shi X, Chen L 2018 Mater. Today Phys. 5 20 |
[24] | Lu P, Qiu W J, Wei Y Y, Zhu C X, Shi X, Chen L D, and Xu F F 2020 Acta Crystallogr. Sect. B-Struct. Sci. Cryst. Eng. Mat. 76 201 |
[25] | Chen L C, Chen P Q, Li W J, Zhang Q, Struzhkin V V, Goncharov A F, Ren Z F, and Chen X J 2019 Nat. Mater. 18 1321 |
[26] | Mahan G D 2015 J. Appl. Phys. 117 045101 |
[27] | Sun S, Li Y, Chen Y, Xu X, Kang L, Zhou J, Xia W, Liu S, Wang M, Jiang J, Liang A, Pei D, Zhao K, Qiu P, Shi X, Chen L, Guo Y, Wang Z, Zhang Y, Liu Z, Yang L, and Chen Y 2020 Chin. Sci. Bull. 65 1888 |
[28] | Liu H L, Yuan X, Lu P, Shi X, Xu F F, He Y, Tang Y S, Bai S Q, Zhang W Q, Chen L D, Lin Y, Shi L, Lin H, Gao X Y, Zhang X M, Chi H, Uher C 2013 Adv. Mater. 25 6607 |
[29] | Zhao K, Eikeland E, He D et al. 2021 Joule 5 1183 |
[30] | Yang L, Chen Z G, Han G, Hong M, Zou Y C, Zou J 2015 Nano Energy 16 367 |
[31] | Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, and Snyder G J 2012 Nat. Mater. 11 422 |
[32] | Liu Y Y, Qiu P F, Chen H Y, Chen R, Shi X, and Chen L D 2017 J. Inorg. Mater. 32 1337 |
[33] | Qiu P, Shi X, and Chen L 2016 Energy Storage Mater. 3 85 |
[34] | Zhang Z, Zhao K, Wei T R, Qiu P, Chen L, and Shi X 2020 Energy & Environ. Sci. 13 3307 |
[35] | Zhao K, Blichfeld A B, Chen H, Song Q, Zhang T, Zhu C, Ren D, Hanus R, Qiu P, Iversen B B, Xu F, Snyder G J, Shi X, and Chen L 2017 Chem. Mater. 29 6367 |
[36] | Zhao K, Qiu P, Shi X, and Chen L 2020 Adv. Funct. Mater. 30 1903867 |
[37] | Zhao K P, Qiu P F, Song Q F, Blichfeld A B, Eikeland E, Ren D D, Ge B H, Iversen B B, Shi X, and Chen L D 2017 Mater. Today Phys. 1 14 |
[38] | Yang D W, Su X L, Li J, Bai H, Wang S Y, Li Z, Tang H, Tang K C, Luo T T, Yan Y G, Wu J S, Yang J H, Zhang Q J, Uher C, Kanatzidis M G, and Tang X F 2020 Adv. Mater. 32 2003730 |
[39] | Deng T T, Wei T R, Huang H, Song Q F, Zhao K P, Qiu P F, Yang J, Chen L D, and Shi X 2020 npj Comput. Mater. 6 81 |
[40] | Bai H, Su X L, Yang D W, Zhang Q J, Tan G J, Uher C, Tang X F, and Wu J S 2021 Adv. Funct. Mater. 31 2100431 |
[41] | Chen H, Yue Z, Ren D, Zeng H, Wei T, Zhao K, Yang R, Qiu P, Chen L, and Shi X 2018 Adv. Mater. 31 1806518 |
[42] | Eikeland E, Blichfeld A B, Borup K A, Zhao K, Overgaard J, Shi X, Chen L, and Iversen B B 2017 IUCrJ 4 476 |
[43] | Kang S D, Danilkin S A, Aydemir U, Avdeev M, Studer A, and Snyder G J 2016 New J. Phys. 18 013024 |
[44] | Xiao X X, Xie W J, Tang X F, and Zhang Q J 2011 Chin. Phys. B 20 087201 |
[45] | Byeon D, Sobota R, Delime-Codrin K, Choi S, Hirata K, Adachi M, Kiyama M, Matsuura T, Yamamoto Y, Matsunami M, and Takeuchi T 2019 Nat. Commun. 10 72 |
[46] | Brown D R, Heijl R, Borup K A, Iversen B B, Palmqvist A, Snyder G J 2016 Phys. Status Solidi RRL 10 618 |
[47] | Liu W D, Yang L, Chen Z G, and Zou J 2020 Adv. Mater. 32 1905703 |
[48] | Brown D R, Day T, Borup K A, Christensen S, Iversen B B, and Snyder G J 2013 APL Mater. 1 052107 |
[49] | Wang H, Porter W, Bottner H, Konig J, Chen L, Bai S, Tritt T, Mayolett A, Senawiratne J, Smith C, Harris F, Sharp J, Lo J, Kleinke H, and Kiss L 2011 Annex VIII—Thermoelectric Materials for Waste Heat Recovery: An International Collaboration for Transportation Applications (Oak Ridge: ORNL Press) chap 4 p 14 |
[50] | Yu J, Zhao K, Qiu P, Shi X, and Chen L 2017 Ceram. Int. 43 11142 |
[51] | Heyding R D 1966 Can. J. Chem. 44 1233 |
[52] | Chrissafis K, Paraskevopoulos K M, Manolikas C 2006 J. Therm. Anal. 84 195 |
[53] | Duan J L, Zhu C X, Guan M J, Lu P, He Y, Fu Z Q, Zhang L L, Xu F F, Shi X, and Chen L D 2018 Ceram. Int. 44 13076 |
[54] | Yang L, Chen Z G, Han G, Hong M, and Zou J 2016 Acta Mater. 113 140 |
[55] | Su X L, Fu F, Yan Y G, Zheng G, Liang T, Zhang Q, Cheng X, Yang D W, Chi H, Tang X F, Zhang Q J, and Uher C 2014 Nat. Commun. 5 4908 |
[56] | Tak J Y, Nam W H, Lee C, Kim S, Lim Y S, Ko K, Lee S, Seo W S, Cho H K, Shim J H, Park C H 2018 Chem. Mater. 30 3276 |
[57] | Emin D 1999 Phys. Rev. B 59 6205 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|