Chin. Phys. Lett.  2021, Vol. 38 Issue (10): 100301    DOI: 10.1088/0256-307X/38/10/100301
GENERAL |
Realization of High-Fidelity Controlled-Phase Gates in Extensible Superconducting Qubits Design with a Tunable Coupler
Yangsen Ye1,2,3, Sirui Cao1,2,3, Yulin Wu1,2,3, Xiawei Chen2, Qingling Zhu1,2,3, Shaowei Li1,2,3, Fusheng Chen1,2,3, Ming Gong1,2,3, Chen Zha1,2,3, He-Liang Huang1,2,3,4, Youwei Zhao1,2,3, Shiyu Wang1,2,3, Shaojun Guo1,2,3, Haoran Qian1,2,3, Futian Liang1,2,3, Jin Lin1,2,3, Yu Xu1,2,3, Cheng Guo1,2,3, Lihua Sun1,2,3, Na Li1,2,3, Hui Deng1,2,3, Xiaobo Zhu1,2,3*, and Jian-Wei Pan1,2,3
1Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
2Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
3Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
4Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou 450000, China
Cite this article:   
Yangsen Ye, Sirui Cao, Yulin Wu et al  2021 Chin. Phys. Lett. 38 100301
Download: PDF(1325KB)   PDF(mobile)(1458KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-fidelity two-qubit gates are essential for the realization of large-scale quantum computation and simulation. Tunable coupler design is used to reduce the problem of parasitic coupling and frequency crowding in many-qubit systems and thus thought to be advantageous. Here we design an extensible 5-qubit system in which center transmon qubit can couple to every four near-neighboring qubits via a capacitive tunable coupler and experimentally demonstrate high-fidelity controlled-phase (CZ) gate by manipulating central qubit and one near-neighboring qubit. Speckle purity benchmarking and cross entropy benchmarking are used to assess the purity fidelity and the fidelity of the CZ gate. The average purity fidelity of the CZ gate is 99.69$\pm 0.04$% and the average fidelity of the CZ gate is 99.65$\pm 0.04$%, which means that the control error is about 0.04%. Our work is helpful for resolving many challenges in implementation of large-scale quantum systems.
Received: 07 September 2021      Editors Suggestion Published: 28 September 2021
Fund: Supported by the National Key R&D Program of China (Grant No. 2017YFA0304300), the Chinese Academy of Sciences, Anhui Initiative in Quantum Information Technologies, Technology Committee of Shanghai Municipality, the National Natural Science Foundation of China (Grants Nos. 11905217, 11774326, and 11905294), the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), the Natural Science Foundation of Shanghai (Grant No. 19ZR1462700), the Key-Area Research and Development Program of Guangdong Provice (Grant No. 2020B0303030001), and the Youth Talent Lifting Project (Grant No. 2020-JCJQ-QT-030).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/10/100301       OR      https://cpl.iphy.ac.cn/Y2021/V38/I10/100301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yangsen Ye
Sirui Cao
Yulin Wu
Xiawei Chen
Qingling Zhu
Shaowei Li
Fusheng Chen
Ming Gong
Chen Zha
He-Liang Huang
Youwei Zhao
Shiyu Wang
Shaojun Guo
Haoran Qian
Futian Liang
Jin Lin
Yu Xu
Cheng Guo
Lihua Sun
Na Li
Hui Deng
Xiaobo Zhu
and Jian-Wei Pan
[1] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, and Oliver W D 2019 Appl. Phys. Rev. 6 021318
[2] Buluta I and Nori F 2009 Science 326 108
[3] Houck A A, Türeci H, and Koch J 2012 Nat. Phys. 8 292
[4] Georgescu I M, Ashhab S, and Nori F 2014 Rev. Mod. Phys. 86 153
[5] Devoret M H and Schoelkopf R J 2013 Science 339 1169
[6] Campbell E T, Terhal B M, and Vuillot C 2017 Nature 549 172
[7] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[8] Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N, and Martinis J M 2013 Phys. Rev. Lett. 111 080502
[9] Martinis J M and Geller M R 2014 Phys. Rev. A 90 022307
[10] Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Megrant A, Mutus J Y, O'Malley P J J, Quintana C M, Sank D, Vainsencher A, Wenner J, White T C, Geller M R, Cleland A N, and Martinis J M 2014 Phys. Rev. Lett. 113 220502
[11] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S, and Oliver W D 2018 Phys. Rev. Appl. 10 054062
[12] Niskanen A O, Harrabi K, Yoshihara F, Nakamura Y, Lloyd S, and Tsai J S 2007 Science 316 723
[13] Hime T, Reichardt P A, Plourde B L T, Robertson T L, Wu C E, Ustinov A V, and Clarke J 2006 Science 314 1427
[14] Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X, Wu Y, Zhang H, Wang H, Song Y, Duan L, and Sun L 2020 Phys. Rev. Appl. 14 024070
[15] Sung Y, Ding L, Braumüller J, Vepsäläinen A, Kannan B, Kjaergaard M, Greene A, Samach G O, McNally C, Kim D, Melville A, Niedzielski B M, Schwartz M E, Yoder J L, Orlando T P, Gustavsson S, and Oliver W D 2021 Phys. Rev. X 11 021058
[16] Foxen B, Neill C, Dunsworth A, Roushan P, Chiaro B, Megrant A, Kelly J, Chen Z, Satzinger K, Barends R, Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Boixo S, Buell D, Burkett B, Chen Y, Collins R, Farhi E, Fowler A, Gidney C, Giustina M, Graff R, Harrigan M, Huang T, Isakov S V, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Klimov P, Korotkov A, Kostritsa F, Landhuis D, Lucero E, McClean J, McEwen M, Mi X, Mohseni M, Mutus J Y, Naaman O, Neeley M, Niu M, Petukhov A, Quintana C, Rubin N, Sank D, Smelyanskiy V, Vainsencher A, White T C, Yao Z, Yeh P, Zalcman A, Neven H, and Martinis J M (Google AI Quantum) 2020 Phys. Rev. Lett. 125 120504
[17] Collodo M C, Herrmann J, Lacroix N, Andersen C K, Remm A, Lazar S, Besse J C, Walter T, Wallraff A, and Eichler C 2020 Phys. Rev. Lett. 125 240502
[18] Xu H, Li W L Z, Han J, Zhang J, Linghu K, Chen Y L M, Yang Z, Wang J, Ma T, Xue G, Jin Y, and Yu H 2021 Chin. Phys. B 30 044212
[19] Barends R, Quintana C M, Petukhov A G, Chen Y, Kafri D, Kechedzhi K, Collins R, Naaman O, Boixo S, Arute F, Arya K, Buell D, Burkett B, Chen Z, Chiaro B, Dunsworth A, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Huang T, Jeffrey E, Kelly J, Klimov P V, Kostritsa F, Landhuis D, Lucero E, McEwen M, Megrant A, Mi X, Mutus J, Neeley M, Neill C, Ostby E, Roushan P, Sank D, Satzinger K J, Vainsencher A, White T, Yao J, Yeh P, Zalcman A, Neven H, Smelyanskiy V N, and Martinis J M 2019 Phys. Rev. Lett. 123 210501
[20] Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis J M, and Neven H 2018 Nat. Phys. 14 595
[21] Arute F, Arya K, Babbush R, Bacon D, Bardin J, Barends R, Biswas R, Boixo S, Brandao F, Buell D, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, and Martinis J 2019 Nature 574 505
[22] Mutus J Y, White T C, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Neill C, O'Malley P J J, Roushan P, Sank D, Vainsencher A, Wenner J, Sundqvist K M, Cleland A N, and Martinis J M 2014 Appl. Phys. Lett. 104 263513
[23] Johansson R, Nation P, and Nori F 2012 Comput. Phys. Commun. 183 1760
[24] Johansson R, Nation P, and Nori F 2013 Comput. Phys. Commun. 184 1234
[25] Yan Z, Zhang Y R, Gong M, Wu Y, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y, Guo C, Sun L, Peng C Z, Xia K, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X, and Pan J W 2019 Science 364 753
[26] McKay D C, Wood C J, Sheldon S, Chow J M, and Gambetta J M 2017 Phys. Rev. A 96 022330
Viewed
Full text


Abstract