Chin. Phys. Lett.  2021, Vol. 38 Issue (10): 101201    DOI: 10.1088/0256-307X/38/10/101201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Prediction of an $\varOmega_{bbb}\varOmega_{bbb}$ Dibaryon in the Extended One-Boson Exchange Model
Ming-Zhu Liu1,2 and Li-Sheng Geng2,3,4*
1School of Space and Environment, Beihang University, Beijing 102206, China
2School of Physics, Beihang University, Beijing 102206, China
3Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 102206, China
4School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
Cite this article:   
Ming-Zhu Liu and Li-Sheng Geng 2021 Chin. Phys. Lett. 38 101201
Download: PDF(812KB)   PDF(mobile)(1395KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Since Yukawa proposed that the pion is responsible for mediating the nucleon-nucleon interaction, meson exchanges have been widely used in understanding hadron-hadron interactions. The most studied mesons are the $\sigma$, $\pi$, $\rho$, and $\omega$, while other heavier mesons are often argued to be less relevant because they lead to short range interactions. However, whether the range of interactions is short or long should be judged with respect to the size of the system studied. We propose that one charmonium exchange is responsible for the formation of the $\varOmega_{ccc}\varOmega_{ccc}$ dibaryon, recently predicted by lattice QCD simulations. The same approach can be extended to the strangeness and bottom sectors, leading to the prediction on the existence of $\varOmega\varOmega$ and $\varOmega_{bbb}\varOmega_{bbb}$ dibaryons, while the former is consistent with the existing lattice QCD results, the latter remains to checked. In addition, we show that the Coulomb interaction may break up the $\varOmega_{ccc}\varOmega_{ccc}$ pair but not the $\varOmega_{bbb}\varOmega_{bbb}$ and $\varOmega\varOmega$ dibaryons.
Received: 07 August 2021      Editors Suggestion Published: 17 September 2021
PACS:  12.38.Gc (Lattice QCD calculations)  
  12.39.Pn (Potential models)  
  14.20.Pt (Exotic baryons)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 1210050997, 11975041, 11735003, and 11961141004).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/10/101201       OR      https://cpl.iphy.ac.cn/Y2021/V38/I10/101201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming-Zhu Liu and Li-Sheng Geng
[1] Yukawa H 1935 Prog. Theor. Phys. Suppl. 17 48
[2] Taketani M, Nakamura S, and Sasaki M 1951 Prog. Theor. Phys. 6 581
[3] Taketani M, Machida S, and Ohnuma S 1952 Prog. Theor. Phys. 7 45
[4] Sawada S, Uecla T, Watari W, and Yonezawa M 1962 Prog. Theor. Phys. 28 991
[5] Machleidt R, Holinde K, and Elster C 1987 Phys. Rep. 149 1
[6] Stoks V G J, Klomp R A M, Terheggen C P F, and de Swart J J 1994 Phys. Rev. C 49 2950
[7]Voloshin M B and Okun L B 1976 JETP Lett. 23 333
[8] Choi S K et al. (Belle Collaboration) 2003 Phys. Rev. Lett. 91 262001
[9] Swanson E S 2004 Phys. Lett. B 588 189
[10] Liu Y R, Liu X, Deng W Z, and Zhu S L 2008 Eur. Phys. J. C 56 63
[11] Liu X, Luo Z G, Liu Y R, and Zhu S L 2009 Eur. Phys. J. C 61 411
[12] Yang Z C, Sun Z F, He J, Liu X, and Zhu S L 2012 Chin. Phys. C 36 6
[13] Wu J J, Molina R, Oset E, and Zou B S 2010 Phys. Rev. Lett. 105 232001
[14] Wang W L, Huang F, Zhang Z Y, and Zou B S 2011 Phys. Rev. C 84 015203
[15] Aaij R et al. (LHCb Collaboration) 2015 Phys. Rev. Lett. 115 072001
[16] Aaij R et al. (LHCb Collaboration) 2019 Phys. Rev. Lett. 122 222001
[17] Sanchez S M, Geng L S, Lu J X, Hyodo T, and Valderrama M P 2018 Phys. Rev. D 98 054001
[18] Liu M Z, Wu T W, Sánchez S M, Valderrama M P, Geng L S, and Xie J J 2021 Phys. Rev. D 103 054004
[19] Karliner M and Rosner J L 2016 Nucl. Phys. A 954 365
[20] Sekihara T, Kamiya Y, and Hyodo T 2018 Phys. Rev. C 98 015205
[21] Wang F L, Yang X D, Chen R, and Liu X 2021 Phys. Rev. D 103 054025
[22] Ablikim M et al. (BESIII Collaboration) 2013 Phys. Rev. Lett. 110 252001
[23] Liu Z Q et al. (Belle Collaboration) 2013 Phys. Rev. Lett. 110 252002
[24] Aceti F, Bayar M, Oset E, Martinez T A, Khemchandani K P, Dias J M, Navarra F S, and Nielsen M 2014 Phys. Rev. D 90 016003
[25] He J 2015 Phys. Rev. D 92 034004
[26] Lyu Y, Tong H, Sugiura T, Aoki S, Doi T, Hatsuda T, Meng J, and Miyamoto T 2021 Phys. Rev. Lett. 127 072003
[27] Richard J M, Valcarce A, and Vijande J 2020 Phys. Rev. Lett. 124 212001
[28] Gongyo S et al. 2018 Phys. Rev. Lett. 120 212001
[29] Lu J X, Geng L S, and Valderrama M P 2019 Phys. Rev. D 99 074026
[30] Machleidt R 2001 Phys. Rev. C 63 024001
[31] Yamaguchi Y, Ohkoda S, Yasui S, and Hosaka A 2011 Phys. Rev. D 84 014032
[32]Yang Z, Wang G J, Wu J J, Oka M, and Zhu S L 2021 arxiv:2107.04860 [hep-ph]
[33] Tanabashi M et al. (Particle Data Group Collaboration) 2018 Phys. Rev. D 98 030001
[34] Meinel S 2010 Phys. Rev. D 82 114514
[35] Huang H, Ping J, Zhu X, and Wang F 2020 arXiv:2011.00513 [hep-ph]
[36] Ishii N, Aoki S, and Hatsuda T 2007 Phys. Rev. Lett. 99 022001
[37] Can K U, Erkol G, Oka M, and Takahashi T T 2015 Phys. Rev. D 92 114515
[38] Klempt E, Bradamante F, Martin A, and Richard J M 2002 Phys. Rep. 368 119
[39] Zhang S and Ma Y G 2020 Phys. Lett. B 811 135867
[40] He H, Liu Y, and Zhuang P 2015 Phys. Lett. B 746 59
[41] Wang H and Chen J H 2021 Nucl. Sci. Tech. 32 2
[42] Qiu J W, Wang X P, and Xing H 2021 Chin. Phys. Lett. 38 041201
[43] Aaij R et al. (LHCb Collaboration) 2020 Phys. Rev. Lett. 125 242001
[44] Chen H X, Chen W, Dong R R, and Su N 2020 Chin. Phys. Lett. 37 101201
[45] Huang Y, Lu J X, Xie J J, and Geng L S 2020 Eur. Phys. J. C 80 973
[46] Liu M Z, Xie J J, and Geng L S 2020 Phys. Rev. D 102 091502
[47] Qin S X and Roberts C D 2020 Chin. Phys. Lett. 37 121201
Viewed
Full text


Abstract